【題目】已知:關(guān)于x的一元二次方程tx2﹣(3t+2)x+2t+2=0(t>0)
(1)求證:方程有兩個不相等的實數(shù)根;
(2)設(shè)方程的兩個實數(shù)根分別為x1 , x2(其中x1<x2),若y是關(guān)于t的函數(shù),且y=x2﹣2x1 , 求這個函數(shù)的解析式,并畫出函數(shù)圖象;
(3)觀察(2)中的函數(shù)圖象,當(dāng)y≥2t時,寫出自變量t的取值范圍.

【答案】
(1)

證明:△=9(3t+2)2﹣4t(2t+2)=(t+2)2,

∵t>0,

∴(t+2)2>0,即△>0,

∴方程有兩個不相等的實數(shù)根;


(2)

證明:解:x= ,

∵t>0,

∴x1=1,x2=2+

∴y=x2﹣2x1=2+ ﹣2×1= ,

即y= (t>0);

如圖,


(3)

證明:當(dāng)y≥2t時,0<t≤1.


【解析】(1)計算判別式的值得到△=(t+2)2 , 從而得到△>0,所以方程有兩個不相等的實數(shù)根;(2)利用公式法解方程得到x1=1,x2=2+ ,y=x2﹣2x1= ,然后利用描點(diǎn)法畫函數(shù)圖象;(3)計算y= 與y=2t的交點(diǎn),然后利用圖象法寫出滿足y≥2t所對應(yīng)的自變量的范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、E、F分別為△ABC的三邊中點(diǎn),試說明△ABC∽△EFD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,頂點(diǎn)為(4,6),則下列說法錯誤的是(
A.b2>4ac
B.ax2+bx+c≤6
C.若點(diǎn)(2,m)(5,n)在拋物線上,則m>n
D.8a+b=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在Rt△AOB中,點(diǎn)A(1,2),∠OBA=90°,OB在x軸上,將△AOB繞點(diǎn)A逆時針旋轉(zhuǎn)90°,點(diǎn)O的對應(yīng)點(diǎn)C恰好落在雙曲線y= (k>0)上,則k的值為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,ADBC于點(diǎn)D,EAB邊上任意一點(diǎn),EFBC于點(diǎn)F,1=2.求證:DGAB.請把證明的過程填寫完整.

證明:∵ADBC,EFBC(   ),

∴∠EFB=ADB=90°(垂直的定義)

EF      

∴∠1=      

又∵∠1=2(已知)

      

DGAB(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(﹣3,0),二次函數(shù)y=ax2+bx+ 的對稱軸為直線x=﹣1,其圖象過點(diǎn)A與x軸交于另一點(diǎn)B,與y軸交于點(diǎn)C.

(1)求二次函數(shù)的解析式,寫出頂點(diǎn)坐標(biāo);
(2)動點(diǎn)M,N同時從B點(diǎn)出發(fā),均以每秒2個三位長度的速度分別沿△ABC的BA,BC邊上運(yùn)動,設(shè)其運(yùn)動的時間為t秒,當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)也隨之停止運(yùn)動,連結(jié)MN,將△BMN沿MN翻折,若點(diǎn)B恰好落在拋物線弧上的B′處,試求t的值及點(diǎn)B′的坐標(biāo);
(3)在(2)的條件下,Q為BN的中點(diǎn),試探究坐標(biāo)軸上是否存在點(diǎn)P,使得以B,Q,P為頂點(diǎn)的三角形與△ABC相似?如果存在,請求出點(diǎn)P的坐標(biāo);如果不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知點(diǎn)E,F(xiàn),G,H是矩形ABCD各邊的中點(diǎn),AB=6,BC=8,動點(diǎn)M從點(diǎn)E出發(fā),沿E→F→G→H→E勻速運(yùn)動,設(shè)點(diǎn)M運(yùn)動的路程x,點(diǎn)M到矩形的某一個頂點(diǎn)的距離為y,如果表示y關(guān)于x函數(shù)關(guān)系的圖象如圖2所示,那么這個頂點(diǎn)是矩形的( )

A.點(diǎn)A
B.點(diǎn)B
C.點(diǎn)C
D.點(diǎn)D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于點(diǎn)P(x,y),如果點(diǎn)Q(x,y′)的縱坐標(biāo)滿足y′= ,那么稱點(diǎn)Q為點(diǎn)P的“關(guān)聯(lián)點(diǎn)”.
(1)請直接寫出點(diǎn)(3,5)的“關(guān)聯(lián)點(diǎn)”的坐標(biāo);
(2)如果點(diǎn)P在函數(shù)y=x﹣2的圖象上,其“關(guān)聯(lián)點(diǎn)”Q與點(diǎn)P重合,求點(diǎn)P的坐標(biāo);
(3)如果點(diǎn)M(m,n)的“關(guān)聯(lián)點(diǎn)”N在函數(shù)y=2x2的圖象上,當(dāng)0≤m≤2時,求線段MN的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀資料:我們把頂點(diǎn)在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如圖1∠ABC所示.同學(xué)們研究發(fā)現(xiàn):P為圓上任意一點(diǎn),當(dāng)弦AC經(jīng)過圓心O時,且AB切⊙O于點(diǎn)A,此時弦切角∠CAB=∠P(圖2)
證明:∵AB切⊙O于點(diǎn)A,∴∠CAB=90°,又∵AC是直徑,∴∠P=90°∴∠CAB=∠P

問題拓展:若AC不經(jīng)過圓心O(如圖3),該結(jié)論:弦切角∠CAB=∠P還成立嗎?請說明理由.
知識運(yùn)用:如圖4,AD是△ABC中∠BAC的平分線,經(jīng)過點(diǎn)A的⊙O與BC切于點(diǎn)D,與AB、AC分別相交于E、F.求證:EF∥BC.

查看答案和解析>>

同步練習(xí)冊答案