如圖,點G、E、A、B在一條直線上,等腰直角△EFG從如圖所示是位置出發(fā),沿直線AB以1單位/秒向右勻速運動,當點G與B重合時停止運動。已知AD=1,AB=2,設(shè)△EFG與矩形ABCD重合部分的面積為S平方單位,運動時間為t秒,則S與t的函數(shù)關(guān)系是 。
科目:初中數(shù)學(xué) 來源: 題型:
四邊形ABCD中,對角線AC、BD相交于點O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判定這個四邊形是平行四邊形的條件有
A.1組 B.2組 C.3組 D.4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,將菱形ABCD沿對角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1.若∠ACB=30°,AB=2,CC1=x,△ACD與△A1C1D1重疊部分的面積為s,則下列結(jié)論:
①△A1AD1≌△CC1B;
②當四邊形ABC1D1是矩形時,x=;
③當x=2時,△BDD1為等腰直角三角形;
④(0<x<)。
其中正確的是 (填序號)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平面直角坐標系xOy中,一次函數(shù)y=2x+2的圖象與x軸交于A,與y軸交于點C,點B的坐標為(a,0),(其中a>0),直線l過動點M(0,m)(0<m<2),且與x軸平行,并與直線AC、BC分別相交于點D、E,P點在y軸上(P點異于C點)滿足PE=CE,直線PD與x軸交于點Q,連接PA.
(1)寫出A、C兩點的坐標;
(2)當0<m<1時,若△PAQ是以P為頂點的倍邊三角形(注:若△HNK滿足HN=2HK,則稱△HNK為以H為頂點的倍邊三角形),求出m的值;
(3)當1<m<2時,是否存在實數(shù)m,使CD•AQ=PQ•DE?若能,求出m的值(用含a的代數(shù)式表示);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點,與y軸的正半軸交于點C,頂點為D,已知A(﹣1,0).
(1)求點B,C的坐標;
(2)判斷△CDB的形狀并說明理由;
(3)將△COB沿x軸向右平移t個單位長度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點后立刻以原來的速度沿AB返回.點P、Q運動速度均為每秒1個單位長度,當點P到達點C時停止運動,點Q也同時停止.連接PQ,設(shè)運動時間為t(t >0)秒.
(1)求線段AC的長度;
(2)當點Q從點B向點A運動時(未到達A點),求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(3)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l:
①當l經(jīng)過點A時,射線QP交AD于點E,求AE的長;
②當l經(jīng)過點B時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知:如圖一,拋物線與x軸正半軸交于A、B兩點,與y軸交于點C,直線經(jīng)過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒 ;設(shè),當t 為何值時,s有最小值,并求出最小值。
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖, 在Rt△ABC中,∠C=90º, AC=9,BC=12,動點P從點A開始沿邊AC向點C以每秒1個單位長度的速度運動,動點Q從點C開始沿邊CB向點B以每秒2個單位長度的速度運動,過點P作PD∥BC,交AB于點D,連接PQ. 點P、Q分別從點A、C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動,設(shè)運動時間為t秒(t≥0).
(1)直接用含t的代數(shù)式分別表示:QB=__________, PD=___________;
(2)是否存在t的值,使四邊形PDBQ為平行四邊形?若存在,求出t的值;若不存在,說明理由;
(3)是否存在t的值,使四邊形PDBQ為菱形?若存在,求出t的值;若不存在,說明理由.并探究如何改變點Q的速度(勻速運動),使四邊形PDBQ在某一時刻成為菱形,求點Q的速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com