【題目】在如圖的直角坐標(biāo)系中,畫出函數(shù)y=-2x+3的圖象,并結(jié)合圖象回答下列問題:
(1)y的值隨x值的增大而 (填“增大”或“減小”);
(2)圖象與x軸的交點(diǎn)坐標(biāo)是 ;圖象與y軸的交點(diǎn)坐標(biāo)是 ;
(3)當(dāng)x 時(shí),y <0 ;
(4)直線y=-2x+3與兩坐標(biāo)軸所圍成的三角形的面積是: .
【答案】(1)減小;(2)(1.5,0) (0,3);(3)>1.5;(4)2.25.
【解析】試題分析:根據(jù)題意,分析可得在y=-2x+3中,當(dāng)x=1時(shí),y=1,x=0時(shí),y=3,據(jù)次可以作出圖象;
(1)y的值隨x值的增大而減。
(2)圖象與x軸的交點(diǎn)坐標(biāo)是(1.5,0),圖象與y軸的交點(diǎn)坐標(biāo)是(0,3);
(3)當(dāng)x>1.5時(shí),y<0.
(4)根據(jù)三角形的面積公式求得即可.
試題解析:根據(jù)題意,易得當(dāng)x=1時(shí),y=1,x=0時(shí),y=3;
據(jù)此可以作出圖象,
根據(jù)圖象,觀察可得:
(1)y的值隨x值的增大而減;
(2)圖象與x軸的交點(diǎn)坐標(biāo)是(1.5,0),圖象與y軸的交點(diǎn)坐標(biāo)是(0,3);
(3)當(dāng)x>1.5時(shí),y<0;
(4)直線y=-2x+3與兩坐標(biāo)軸所圍成的三角形的面積=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】寫出下列問題中的關(guān)系式,并指出其中的變量和常量.
(1)直角三角形中一個(gè)銳角a與另一個(gè)銳角β之間的關(guān)系;
(2)一盛滿30噸水的水箱,每小時(shí)流出0.5噸水,試用流水時(shí)間t(小時(shí))表示水箱中的剩水量y(噸).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,點(diǎn)E在AC的延長線上,有下列條件∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判斷AB∥CD的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)體育組因教學(xué)需要本學(xué)期購進(jìn)籃球和排球共100個(gè),共花費(fèi)2600元,已知籃球的單價(jià)是20元個(gè),排球的單價(jià)是30元個(gè).
籃球和排球各購進(jìn)了多少個(gè)列方程組解答?
因該中學(xué)秋季開學(xué)成立小學(xué)部,教學(xué)資源實(shí)現(xiàn)共享,體育組提出還需購進(jìn)同樣的籃球和排球共30個(gè),但學(xué)校要求花費(fèi)不能超過800元,那么排球最多能購進(jìn)多少個(gè)列不等式解答?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條筆直的公路l穿過草原,公路邊有一消防站A,距離公路5 千米的地方有一居民點(diǎn)B,A、B的直線距離是10 千米.一天,居民點(diǎn)B著火,消防員受命欲前往救火.若消防車在公路上的最快速度是80千米/小時(shí),而在草地上的最快速度是40千米/小時(shí),則消防車在出發(fā)后最快經(jīng)過小時(shí)可到達(dá)居民點(diǎn)B.(友情提醒:消防車可從公路的任意位置進(jìn)入草地行駛.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,點(diǎn)P從點(diǎn)C開始沿射線CA方向以1cm/s的速度運(yùn)動(dòng);同時(shí),點(diǎn)Q也從點(diǎn)C開始沿射線CB方向以3cm/s的速度運(yùn)動(dòng).
(1)幾秒后△PCQ的面積為3cm2?此時(shí)PQ的長是多少?(結(jié)果用最簡二次根式表示)
(2)幾秒后以A、B、P、Q為頂點(diǎn)的四邊形的面積為22cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:,OE平分,點(diǎn)A、B、C分別是射線OM、OE、ON上的動(dòng)點(diǎn)、B、C不與點(diǎn)O重合,連接AC交射線OE于點(diǎn)設(shè).
如圖1,若,則
的度數(shù)是______;
當(dāng)時(shí),______;當(dāng)時(shí),______.
如圖2,若,則是否存在這樣的x的值,使得中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F分別是ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1)試判斷四邊形AECF的形狀;
(2)若AE=BE,∠BAC=90°,求證:四邊形AECF是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com