【題目】(問題背景)

如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)軸上的一個(gè)動(dòng)點(diǎn).當(dāng)點(diǎn)軸上移動(dòng)時(shí),始終保持是等腰直角三角形,且(點(diǎn)、、按逆時(shí)針方向排列);當(dāng)點(diǎn)移動(dòng)到點(diǎn)時(shí),得到等腰直角三角形(此時(shí)點(diǎn)與點(diǎn)重合).

(初步探究)

(1)寫出點(diǎn)的坐標(biāo)______.

(2)點(diǎn)軸上移動(dòng)過程中,當(dāng)?shù)妊苯侨切?/span>的頂點(diǎn)在第四象限時(shí),連接.

求證:;

(深入探究)

(3)當(dāng)點(diǎn)軸上移動(dòng)時(shí),點(diǎn)也隨之運(yùn)動(dòng).經(jīng)過探究發(fā)現(xiàn),點(diǎn)的橫坐標(biāo)總保持不變,請(qǐng)直接寫出點(diǎn)的橫坐標(biāo):______.

(拓展延伸)

(4)點(diǎn)軸上移動(dòng)過程中,當(dāng)為等腰三角形時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

備用圖

【答案】(1)(11);(2)證明見解析;(3)1;(4).

【解析】

根據(jù)等腰直角三角形的性質(zhì),OA=AB,題干中已知A點(diǎn)坐標(biāo),即可求得OB的長度,表示出B點(diǎn)坐標(biāo)即可.

根據(jù)等腰直角三角形的性質(zhì)得到,再根據(jù)等角的余角相等,得出角,最后利用三角形全等的判定方法進(jìn)行判定即可.

根據(jù)(2)的結(jié)論△ABP也為直角三角形,且AB垂直BP,且AB=OB=1,即可得出P點(diǎn)的橫坐標(biāo).

先根據(jù)題意,確定B點(diǎn)、A點(diǎn)坐標(biāo),設(shè)出P點(diǎn)和C點(diǎn)坐標(biāo),分情況進(jìn)行討論,當(dāng)OP=OB時(shí),當(dāng)OB=BP時(shí),當(dāng)OP=BP時(shí),分別利用兩點(diǎn)間距離公式求出點(diǎn)P點(diǎn)的坐標(biāo),然后分別算出AP的長,最后利用AP=AC計(jì)算出A點(diǎn)坐標(biāo)即可.

解:(1)點(diǎn)A的坐標(biāo)為(0,1)

△OAB是等腰直角三角形,且OA=AB,OA⊥BA

∴B點(diǎn)坐標(biāo)為.

(2)證明:在等腰直角三角形中,,

在等腰直角三角形中,

(3)(已證)

∴∠ABP=90°

∴PB垂直AB,P點(diǎn)在過B點(diǎn)且垂直與AB的垂線上,

∵點(diǎn)B的坐標(biāo)為(1,1)

∴P點(diǎn)的橫坐標(biāo)為1.

(4)由題意和(1)可知,

設(shè)P(1,y),C(x,0),

當(dāng)OB=OP時(shí),,

解得:,

,

解得:,

所以C點(diǎn)坐標(biāo)為()或(

同理當(dāng)OB=OP時(shí),可得C點(diǎn)坐標(biāo)為(-2,0)

當(dāng)BP=OP時(shí),可得C點(diǎn)坐標(biāo)為(-1,0)

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC,D、E是ABC內(nèi)的兩點(diǎn),AE平分BAC,D=DBC=60°,若BD=5cm,DE=3cm,則BC的長是 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸,軸分別交于點(diǎn)上的一點(diǎn),若將沿折疊,點(diǎn)恰好落在軸上的點(diǎn)處,則直線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A.F、C.D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且

AB=DE,∠A=∠D,AF=DC.

(1)求證:四邊形BCEF是平行四邊形,

(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:若一個(gè)三角形中,其中有一個(gè)內(nèi)角是另外一個(gè)內(nèi)角的一半,則這樣的三角形叫做半角三角形”. 例如:等腰直角三角形就是半角三角形”.在鈍角三角形中,,,,過點(diǎn)的直線邊于點(diǎn).點(diǎn)在直線上,且

1)若,點(diǎn)延長線上.

當(dāng),點(diǎn)恰好為中點(diǎn)時(shí),依據(jù)題意補(bǔ)全圖1.請(qǐng)寫出圖中的一個(gè)半角三角形_______;

如圖2,若,圖中是否存在半角三角形除外),若存在,請(qǐng)寫出圖中的半角三角形,并證明;若不存在,請(qǐng)說明理由;

2)如圖3,若,保持的度數(shù)與(1)中②的結(jié)論相同,請(qǐng)直接寫出,, 滿足的數(shù)量關(guān)系:______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABBC,直線l垂直平分AC.

1)如圖1,作∠ABC的平分線交直線l于點(diǎn)D,連接AD,CD.

①補(bǔ)全圖形;

②判斷∠BAD和∠BCD的數(shù)量關(guān)系,并證明.

2)如圖2,直線l與△ABC的外角∠ABE的平分線交于點(diǎn)D,連接AD,CD.求證:∠BAD=BCD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線經(jīng)過的直角頂點(diǎn)的邊上有兩個(gè)動(dòng)點(diǎn),點(diǎn)的速度從點(diǎn)出發(fā)沿移動(dòng)到點(diǎn),點(diǎn)的速度從點(diǎn)出發(fā),沿移動(dòng)到點(diǎn),兩動(dòng)點(diǎn)中有一個(gè)點(diǎn)到達(dá)終點(diǎn)后另一個(gè)點(diǎn)繼續(xù)移動(dòng)到終點(diǎn)過點(diǎn)分別作,垂足分別為點(diǎn).,設(shè)運(yùn)動(dòng)時(shí)間為,則當(dāng)___時(shí),以點(diǎn)為頂點(diǎn)的三角形與以點(diǎn)為頂點(diǎn)的三角形全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某小區(qū)小孩暑期的學(xué)習(xí)情況,王老師隨機(jī)調(diào)查了該小區(qū)8個(gè)小孩某天的學(xué)習(xí)時(shí)間,結(jié)果如下(單位:小時(shí)):1.5,1.5,3,4,2,5,2.5,4.5,關(guān)于這組數(shù)據(jù),下列結(jié)論錯(cuò)誤的是(  )

A. 極差是3.5 B. 眾數(shù)是1.5 C. 中位數(shù)是3 D. 平均數(shù)是3

查看答案和解析>>

同步練習(xí)冊(cè)答案