【題目】如圖,在平面直角坐標系中,△ABC 的頂點坐標分別為A(0,-3),B(3,-2),C(2,-4).
(1)在圖中作出△ABC關于x軸對稱的△A1B1C1.
(2)點C1的坐標為: .
(3)△ABC的周長為 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形ABCD中,E是AB邊的中點,DE交AC于點F,AC、DE把它分成的四部分的面積分別為S1S2S3S4,下面結論:
①只有一對相似三角形
②EF:ED=1:2
③S1:S2:S3:S4=1:2:4:5
其中正確的結論是( 。
A.①③ B.③ C.① D.①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角中, ,點是的中點,且AC=3,將一塊直角三角板的直角頂點放在點處,始終保持該直角三角板的兩直角邊分別與、相交,交點分別為、,則___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,慢車的速度是快車速度的,兩車同時出發(fā).設慢車行駛的時間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關系.
根據(jù)圖象解決以下問題:
(1)甲、乙兩地之間的距離為 km;D點的坐標為 ;
(2)求線段BC的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)若第二列快車從乙地出發(fā)駛往甲地,速度與第一列快車相同.在第一列快車與慢車相遇30分鐘后,第二列快車追上慢車.求第二列快車比第一列快車晚出發(fā)多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廣告公司為了招聘一名創(chuàng)意策劃,準備從專業(yè)技能和創(chuàng)新能力兩方面進行考核,成績高者錄。住⒁、丙三名應聘者的考核成績以百分制統(tǒng)計如下:
(1)如果公司認為專業(yè)技能和創(chuàng)新能力同等重要,則應聘人 將被錄。
(2)如果公司認為職員的創(chuàng)新能力比專業(yè)技能重要,因此分別賦予它們6和4的權.計算他們賦權后各自的平均成績,并說明誰將被錄取.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFMN的一邊MN在邊BC上,頂點E、F分別在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求證:△AEF∽△ABC:
(2)求正方形EFMN的邊長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】和都是等腰直角三角形,.
(1)如圖1,點、分別在、上,則、滿足怎樣的數(shù)量關系和位置關系?(直接寫出答案)
(2)如圖2,點在內部,點在外部,連結、,則、滿足怎樣的數(shù)量關系和位置關系?請說明理由.
(3)如圖3,點、都在外部,連結、、、,與相交于點.已知,,設,,求與之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩地相距千米,甲、乙兩人都從地去地,圖中和分別表示甲、乙兩人所走路程(千米)與時間(小時)之間的關系,下列說法: ①乙晚出發(fā)小時;②乙出發(fā)小時后追上甲;③甲的速度是千米/小時; ④乙先到達地.其中正確的是__________.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點P到封閉圖形F的“極差距離”D(P,W)定義如下:任取圖形W上一點Q,記PQ長度的最大值為M,最小值為m(若P與Q重合,則PQ=0),則“極差距離”D(P,W)=M﹣m.如圖,正方形ABCD的對角線交點恰與原點O重合,點A的坐標為(2,2)
(1)點O到線段AB的“極差距離”D(O,AB)=______.點K(5,2)到線段AB的“極差距離”D(K,AB)=______.
(2)記正方形ABCD為圖形W,點P在x軸上,且“極差距離”D(P,W)=2,求直線AP的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com