精英家教網(wǎng)如圖,已知AB∥CD,CE、AE分別平分∠ACD、∠CAB,則∠1+∠2=( 。
A、45°B、90°C、60°D、75°
分析:由AB∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),可得∠BAC+∠ACD=180°,又由CE、AE分別平分∠ACD、∠CAB,可得∠1=
1
2
∠BAC,∠2=
1
2
∠ACD,則可求得∠1+∠2的度數(shù).
解答:解:∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵CE、AE分別平分∠ACD、∠CAB,
∴∠1=
1
2
∠BAC,∠2=
1
2
∠ACD,
∴∠1+∠2=
1
2
∠BAC+
1
2
∠ACD=
1
2
(∠BAC+∠ACD)=
1
2
×180°=90°.
故選B.
點(diǎn)評:此題考查了平行線與角平分線的性質(zhì).題目比較簡單,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知AB=CD且∠ABD=∠BDC,要證∠A=∠C,判定△ABD≌△CDB的方法是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,已知AB∥CD,∠A=38°,則∠1=
142°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB∥CD,∠1=50°25′,則∠2的大小是
129°35′
129°35′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知 AB∥CD,∠A=53°,則∠1的度數(shù)是
127°
127°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB∥CD∥EF,那么下列結(jié)論中,正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案