【題目】如圖,O是直線AB上的一點,∠AOC=45°,OE是∠BOC內部的一條射線,且OF平分∠AOE.
(1)如圖1,若∠COF=35°,求∠EOB的度數(shù);
(2)如圖2,若∠EOB=40°,求∠COF的度數(shù);
(3)如圖3,∠COF與∠EOB有怎樣的數(shù)量關系?請說明理由.
【答案】(1)∠EOB=20°;(2)∠COF= 25°;(3)∠EOB+2∠COF=90°,理由見解析.
【解析】
(1)OF平分∠AOE得出∠AOF=∠EOF,再利用∠BOE與∠AOE是鄰補角這一關系解答即可;
(2)分析方法如上題,OF平分∠AOE得出∠AOF=∠EOF,再利用∠BOE與∠AOE是鄰補角相加等于180°解答即可;
(3)分析方法同上,設∠COF與∠EOB的度數(shù)分別是α和β,再計算得出數(shù)量關系即可.
(1)∵∠AOC=45°,∠COF=35°
∴∠AOF=∠AOC+∠COF=80°
∵OF平分∠AOE,
∴∠AOE=2∠AOF=160°
∵∠AOB是平角
∴∠AOB=180°
∴∠EOB=∠AOB﹣∠AOE=20°
答:∠EOB的度數(shù)是20°.
(2)∠AOE=180°﹣40°=140°
∵OF平分∠AOE,
∴∠AOF=∠AOE=70°
∴∠COF=∠AOF﹣∠AOC=70°﹣45°=25°
答:∠COF的度數(shù)是25°.
(3)∠EOB+2∠COF=90°,理由如下:
設∠COF=α,∠BOE=β
∵∠AOB是平角,
∴∠AOE=180°﹣β
∵OF平分∠AOE,
∴2∠AOF=∠AOE=180°﹣β
∴2α=2∠COF=2(∠AOF﹣∠AOC )
=2∠AOF﹣2∠AOC
=180°﹣β﹣2×45°=90°﹣β
∴2α+β=90°
即∠EOB+2∠COF=90°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,運點P從點B出發(fā),沿路線BCD作勻速運動,那么△ABP的面積與點P運動的路程之間的函數(shù)圖象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,CA⊥AB,垂足為點A,射線BM⊥AB,垂足為點B,AB=12cm,AC=6cm.動點E從A點出發(fā)以3cm/s沿射線AN運動,動點D在射線BM上,隨著E點運動而運動,始終保持ED=CB.當點E經(jīng)過______s時,△DEB與△BCA全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山地自行車越來越受中學生的喜愛.一網(wǎng)店經(jīng)營的一個型號山地自行車,今年一月份銷售額為30000元,二月份每輛車售價比一月份每輛車售價降價100元,若銷售的數(shù)量與上一月銷售的數(shù)量相同,則銷售額是27000元.
(1)求二月份每輛車售價是多少元?
(2)為了促銷,三月份每輛車售價比二月份每輛車售價降低了10%銷售,網(wǎng)店仍可獲利35%,求每輛山地自行車的進價是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知: ,.
(1)當x=1和-1時,分別求P,Q的值;
(2)當x=19時,P的值為a, Q的值為b,當x=-19時,分別求P, Q的值(用含a,b的代數(shù)式表示);
(3)當x=m時,P, Q的值分別為c, d; 當x=-m時,P, Q的值分別為e, f,則在c,d, e, f四個有理數(shù)中,以下判斷正確的是 (只要填序號即可).
①有兩個相等的正數(shù);②有兩個互為相反數(shù);③至多有兩個正數(shù);④至少有兩個正數(shù);⑤至多有一個負數(shù);⑥至少有一個負數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A,B在數(shù)軸上對應的數(shù)分別用a,b表示,并且關于x的多項式(a+10)x7+2xb-15﹣4是五次二項式,P,Q是數(shù)軸上的兩個動點.
(1)a=_____,b=_____;
(2)設點P在數(shù)軸上對應的數(shù)為x,PA+PB=40,求x的值;
(3)動點P,Q分別從A,B兩點同時出發(fā)向左運動,點P,Q的運動速度分別為3個單位長度/秒和2個單位長度/秒.點M是線段PQ中點,設運動的時間小于6秒,問6AM+5PB的值是否發(fā)生變化?若不變,求其值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向的B處,求此時輪船所在的B處與燈塔P的距離.(參考數(shù)據(jù):≈2.449,結果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進50臺電視機,已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.
(1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你計算一下商場有哪幾種進貨方案?
(2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,應選擇哪種方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB∥CD,∠B=∠D.點EF分別在AB、CD上.連接AC,分別交DE、BF于G、H.求證:∠1+∠2=180°
證明:∵AB∥CD,
∴∠B=_____._____
又∵∠B=∠D,
∴_____=_____.(等量代換)
∴_____∥_____._____
∴∠l+∠2=180°._____
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com