【題目】如圖,在平面直角坐標(biāo)系中,,以為一邊,在第一象限作菱形,并使,再以對(duì)角線為一邊,在如圖所示的一側(cè)作相同形狀的菱形,再依次作菱形,……,,則的長(zhǎng)度為_________

【答案】

【解析】

根據(jù)菱形的性質(zhì)和已知條件得到……都是底角為30°的等腰三角形,證明底角為30°的等腰三角形底與腰的比為1,分別求出OA1OA2,OA3,OA4……,依據(jù)規(guī)律,問(wèn)題得解.

解:∵四邊形是菱形,

,,

同理,……都是底角為30°的等腰三角形.

如圖:等腰三角形MNP中,∠N=30°,做MQNPQ

NQ=PQ,

RtMNQ中,,

PNMN=1,

即底角為30°的等腰三角形底與腰的比為1

∴在中,OA1=

中,OA2=

中,OA3=,

中,OA4=,

……

=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像與軸分別交于兩點(diǎn),與反比例函數(shù)的圖像交于點(diǎn),點(diǎn)C在反比例函數(shù)的圖像上,過(guò)點(diǎn)C軸于點(diǎn)D,連接,已知

1,點(diǎn)A的坐標(biāo)為________________

2)點(diǎn)在線段上,連接,且,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ACDF,點(diǎn)BAC上,點(diǎn)EDF上,連結(jié)AE,BD相交于點(diǎn)P,連結(jié)CEBF相交于點(diǎn)Q,若ABEF,BCDE

1)求證:四邊形BPEQ為平行四邊形;

2)若DP2BP,BF3CE6.求證:四邊形BPEQ為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在C1處,折痕為EF,若AB4,BC8,則線段EF的長(zhǎng)度為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】金秋時(shí)節(jié),碩果飄香,某精準(zhǔn)扶貧項(xiàng)目果園上市一種有機(jī)生態(tài)水果.為幫助果園拓寬銷路,欣欣超市對(duì)這種水果進(jìn)行代銷,進(jìn)價(jià)為5/千克,售價(jià)為6/千克時(shí),當(dāng)天的銷售量為100千克;在銷售過(guò)程中發(fā)現(xiàn):銷售單價(jià)每上漲0.5元,當(dāng)天的銷售量就減少5千克.設(shè)當(dāng)天銷售單價(jià)統(tǒng)一為x/千克(x≥6,且x是按0.5元的倍數(shù)上漲),當(dāng)天銷售利潤(rùn)為y元.

1)求yx的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

2)要使當(dāng)天銷售利潤(rùn)不低于240元,求當(dāng)天銷售單價(jià)所在的范圍;

3)若該種水果每千克的利潤(rùn)不超過(guò)80%,要想當(dāng)天獲得利潤(rùn)最大,每千克售價(jià)為多少元?并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鄂爾多斯市某百貨商場(chǎng)銷售某一熱銷商品A,其進(jìn)貨和銷售情況如下:用16000元購(gòu)進(jìn)一批該熱銷商品A,上市后很快銷售一空,根據(jù)市場(chǎng)需求情況,該商場(chǎng)又用7500元購(gòu)進(jìn)第二批該商品,已知第二批所購(gòu)件數(shù)是第一批所購(gòu)件數(shù)的一半,且每件商品的進(jìn)價(jià)比第一批的進(jìn)價(jià)少10元.

1)求商場(chǎng)第二批商品A的進(jìn)價(jià);

2)商場(chǎng)同時(shí)銷售另一種熱銷商品B,已知商品B的進(jìn)價(jià)與第二批商品A的進(jìn)價(jià)相同,且最初銷售價(jià)為165元,每天能賣出125件,經(jīng)市場(chǎng)銷售發(fā)現(xiàn),若售價(jià)每上漲1元,其每天銷售量就減少5件,問(wèn)商場(chǎng)該如何定售價(jià),每天才能獲得最大利潤(rùn)?并求出每天的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE、BF,交點(diǎn)為G.

(1)求證:AE⊥BF;

(2)將△BCF沿BF對(duì)折,得到△BPF(如圖2),延長(zhǎng)FP交BA的延長(zhǎng)線于點(diǎn)Q,求sin∠BQP的值;

(3)將△ABE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點(diǎn)N,當(dāng)正方形ABCD的邊長(zhǎng)為4時(shí),直接寫出四邊形GHMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD5,連接AC,OAC的中點(diǎn),MAD上一點(diǎn),且MD1PBC上一動(dòng)點(diǎn),則PMPO的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與y軸交于點(diǎn)A(0,-4),與x軸交于點(diǎn)B(-2,0),C(8,0),連接AB,AC

1)求出二次函數(shù)表達(dá)式;

2)若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過(guò)點(diǎn)NNMAB,交AC于點(diǎn)M,連接AN,當(dāng)以點(diǎn)AM,N為頂點(diǎn)的三角形與以點(diǎn)A,B,O為頂點(diǎn)的三角形相似時(shí),求此時(shí)點(diǎn)N的坐標(biāo);

3)若點(diǎn)Nx軸上運(yùn)動(dòng),當(dāng)以點(diǎn)AN,C為頂點(diǎn)的三角形是等腰三角形時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案