【題目】如圖,將矩形ABCD沿AF折疊,使點D落在BC邊的點E處,過點E作EG∥CD交AF于點G,連接DG.給出以下結(jié)論:①DG=DF;②四邊形EFDG是菱形;③EG2=GF×AF;④當(dāng)AG=6,EG=2時,BE的長為 ,其中正確的結(jié)論個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】
先依據(jù)翻折的性質(zhì)和平行線的性質(zhì)證明∠DGF=∠DFG,從而得到GD=DF,接下來依據(jù)翻折的性質(zhì)可證明DG=GE=DF=EF,連接DE,交AF于點O.由菱形的性質(zhì)可知GF⊥DE,OG=OF=GF,接下來,證明△DOF∽△ADF,由相似三角形的性質(zhì)可證明DF2=FOAF,于是可得到GE、AF、FG的數(shù)量關(guān)系,過點G作GH⊥DC,垂足為H.利用(2)的結(jié)論可求得FG=4,然后再△ADF中依據(jù)勾股定理可求得AD的長,然后再證明△FGH∽△FAD,利用相似三角形的性質(zhì)可求得GH的長,最后依據(jù)BE=AD-GH求解即可.
∵GE∥DF,
∴∠EGF=∠DFG.
∵由翻折的性質(zhì)可知:GD=GE,DF=EF,∠DGF=∠EGF,
∴∠DGF=∠DFG.
∴GD=DF.故①正確;
∴DG=GE=DF=EF.
∴四邊形EFDG為菱形,故②正確;
如圖1所示:連接DE,交AF于點O.
∵四邊形EFDG為菱形,
∴GF⊥DE,OG=OF=GF.
∵∠DOF=∠ADF=90°,∠OFD=∠DFA,
∴△DOF∽△ADF.
∴,即DF2=FOAF.
∵FO=GF,DF=EG,
∴EG2=GFAF.故③正確;
如圖2所示:過點G作GH⊥DC,垂足為H.
∵EG2=GFAF,AG=6,EG=2,
∴20=FG(FG+6),整理得:FG2+6FG-40=0.
解得:FG=4,F(xiàn)G=-10(舍去).
∵DF=GE=2,AF=10,
∴AD==4.
∵GH⊥DC,AD⊥DC,
∴GH∥AD.
∴△FGH∽△FAD.
∴,即,
∴GH=,
∴BE=AD-GH=4-=.故④正確.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國古代數(shù)學(xué)的重要著作,方程術(shù)是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩。問:牛、羊各直金幾何?譯文:“假設(shè)有 5 頭牛、2 只羊,值金 10 兩;2 頭牛、5 只羊,值金 8 兩。問:每頭牛、每只羊各值金多少兩?” 設(shè)每頭牛值金 x 兩,每只羊值金 y 兩,則列方程組錯誤的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在鈍角三角形ABC中,AB=6cm,AC=12cm,動點D從A點出發(fā)到B點止,動點E從C點出發(fā)到A點止.點D運(yùn)動的速度為1cm/秒,點E運(yùn)動的速度為2cm秒.如果兩點同時運(yùn)動,那么當(dāng)以點A、D、E為頂點的三角形與△ABC相似時,運(yùn)動的時間是( )
A. 3或2.8 B. 3或4.8 C. 1或4 D. 1或6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0
(1)證明:無論m為何值方程都有兩個實數(shù)根;
(2)是否存在正數(shù)m,使方程的兩個實數(shù)根的平方和等于26?若存在,求出滿足條件的正數(shù)m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在菱形ABCD中,AB=6,tan∠ABC=2,點E是射線DA上的一個動點,連接CE,將線段CE繞點C順時針旋轉(zhuǎn)一個角α(α=∠BCD),得到對應(yīng)線段CF.
(1)求證:△BCE≌△DCF;
(2)求線段DF的長度的最小值;
(3)如圖2,連接BD、EF.BD交EC、EF于點P、Q.當(dāng)△EPQ是直角三角形時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場,為了吸引顧客,在“白色情人節(jié)”當(dāng)天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機(jī)會.已知在搖獎機(jī)內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎?wù)弑仨殢膿u獎機(jī)內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.
球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 18 | 24 | 18 |
(1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.
(2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實惠.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形ABC中,∠ACB=90°,D、E是邊AB上兩點,且CE所在直線垂直平分線段AD,CD平分∠BCE,BC=2,則AB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:矩形ABCD中AB=2,BC= ,⊙A是以A為圓心,半徑r=1的圓,若⊙A繞著點B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α( 0°<α<180°);當(dāng)旋轉(zhuǎn)后的圓與矩形ABCD的邊相切時,α=________度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com