【題目】如圖,已知點(diǎn)A(3,0),以A為圓心作⊙A與Y軸切于原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B,過B作⊙A的切線l.
(1)以直線l為對(duì)稱軸的拋物線過點(diǎn)A及點(diǎn)C(0,9),求此拋物線的解析式;
(2)拋物線與x軸的另一個(gè)交點(diǎn)為D,過D作⊙A的切線DE,E為切點(diǎn),求DE的長(zhǎng);
(3)點(diǎn)F是切線DE上的一個(gè)動(dòng)點(diǎn),當(dāng)△BFD與△EAD相似時(shí),求出BF的長(zhǎng) .
【答案】
(1)解:由題意可知,拋物線的對(duì)稱軸為:x=6
∴設(shè)拋物線的解析式為
∵拋物線經(jīng)過點(diǎn)A(3,0)和C(0,9)
∴
解得: ,k=-3
∴
(2)解:連接AE
∵DE是⊙A的切線,∴∠AED=90°,AE=3
∵直線l是拋物線的對(duì)稱軸,點(diǎn)A,D是拋物線與x軸的交點(diǎn)
∴AB=BD=3
∴AD=6
在Rt△ADE中,
∴
(3)解:)當(dāng)BF⊥ED時(shí)∵∠AED=∠BFD=90°∠ADE=∠BDF
∴△AED∽△BFD
∴ 即
∴
當(dāng)FB⊥AD時(shí)∵∠AED=∠FBD=90°∠ADE=∠FDB
∴△AED∽△FBD ∴ 即
∴當(dāng)△BFD與EAD△相似時(shí),BF的長(zhǎng)為 或
【解析】(1)根據(jù)題意可知此拋物線的對(duì)稱軸為x=6,設(shè)拋物線的解析式為頂點(diǎn)式,再將點(diǎn)A、C兩點(diǎn)坐標(biāo)代入解析式,建立方程求解,即可求出此函數(shù)解析式。
(2) 由DE是⊙A的切線,因此添加輔助線連接AE,得出∠AED=90°,AE=3 ,再根據(jù)圓的對(duì)稱性及拋物線的對(duì)稱性,求出AD的長(zhǎng), 在Rt△ADE中,利用勾股定理求出DE的長(zhǎng)。
(3)抓住已知點(diǎn)F是切線DE上的一個(gè)動(dòng)點(diǎn),要使△BFD與△EAD相似,圖形中隱含公共角∠ADE=∠BDF,因此分兩種情況:當(dāng)BF⊥ED時(shí);當(dāng)FB⊥AD時(shí),根據(jù)相似三角形的性質(zhì),得出對(duì)應(yīng)邊成比例,建立方程,即可求出BF的長(zhǎng)。
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)和勾股定理的概念是解答本題的根本,需要知道增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算并觀察下列各式:
第1個(gè):(a﹣b)(a+b)=______;
第2個(gè):(a﹣b)(a2+ab+b2)=______;
第3個(gè):(a﹣b)(a3+a2b+ab2+b3)=_______;
……
這些等式反映出多項(xiàng)式乘法的某種運(yùn)算規(guī)律.
(2)猜想:若n為大于1的正整數(shù),則(a﹣b)(an﹣1+an﹣2b+an﹣3b2+……+a2bn﹣3+abn﹣2+bn﹣1)=________;
(3)利用(2)的猜想計(jì)算:2n﹣1+2n﹣2+2n﹣3+……+23+22+1=______.
(4)拓廣與應(yīng)用:3n﹣1+3n﹣2+3n﹣3+……+33+32+1=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,則∠BED的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)A對(duì)應(yīng)的數(shù)為a,點(diǎn)B對(duì)應(yīng)的數(shù)為b,且多項(xiàng)式﹣x2y﹣xy2﹣2xy+5的次數(shù)為a,常數(shù)項(xiàng)為b.
(1)直接寫出a、b的值;
(2)數(shù)軸上點(diǎn)A、B之間有一動(dòng)點(diǎn)P(不與A、B重合),若點(diǎn)P對(duì)應(yīng)的數(shù)為x,試化簡(jiǎn):|2x+6|+4|x﹣5|﹣|6﹣x|+|3x﹣9|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了預(yù)測(cè)本校應(yīng)屆畢業(yè)女生“一分鐘跳繩”項(xiàng)目考試情況,從九年級(jí)隨機(jī)抽取部分女生進(jìn)行該項(xiàng)目測(cè)試,并以測(cè)試數(shù)據(jù)為樣本,繪制出如圖所示的部分頻數(shù)分布直方圖(從左到右依次分為六個(gè)小組,每小組含最小值,不含最大值)和扇形統(tǒng)計(jì)圖.根據(jù)統(tǒng)計(jì)圖提供的信息解答下列問題:
(1)補(bǔ)全頻數(shù)分布直方圖 , 并指出這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第小組;(1)
(2)若測(cè)試九年級(jí)女生“一分鐘跳繩”次數(shù)不低于130次的成績(jī)?yōu)閮?yōu)秀,本校九年級(jí)女生共有260人,請(qǐng)估計(jì)該校九年級(jí)女生“一分鐘跳繩”成績(jī)?yōu)閮?yōu)秀的人數(shù);
(3)如測(cè)試九年級(jí)女生“一分鐘跳繩”次數(shù)不低于170次的成績(jī)?yōu)闈M分,在這個(gè)樣本中,從成績(jī)?yōu)閮?yōu)秀的女生中任選一人,她的成績(jī)?yōu)闈M分的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,BC⊥CD,E是AD的中點(diǎn),連結(jié)BE并延長(zhǎng)交CD的延長(zhǎng)線于點(diǎn)F.
(1)請(qǐng)連結(jié)AF、BD,試判斷四邊形ABDF是何種特殊四邊形,并說明理由.
(2)若AB=4,BC=5,CD=6,求△BCF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),它是菱形 B. 當(dāng)AC⊥BD時(shí),它是菱形
C. 當(dāng)∠ABC=90°時(shí),它是矩形 D. 當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(給出定義)
數(shù)軸上順次有三點(diǎn)A、C、B,若點(diǎn)C到點(diǎn)A的距離是點(diǎn)C到點(diǎn)B的距離的3倍,我們就稱點(diǎn)C是(A、B)的“夢(mèng)想點(diǎn)”例如:圖①中,點(diǎn)A、B表示的數(shù)分別為-2、2,表示數(shù)1的點(diǎn)C是(A、B)的“夢(mèng)想點(diǎn)”;圖②中,點(diǎn)A、B表示對(duì)的數(shù)分別為-2、2,表示-1的點(diǎn)C是(B、A)的“夢(mèng)想點(diǎn).
(解決問題)
(1)若數(shù)軸上M、N兩點(diǎn)所表示的數(shù)分別為且滿足求出(M、N)的“夢(mèng)想點(diǎn)”表示的數(shù);
(2)如圖③,在數(shù)軸上點(diǎn)A、B表示的數(shù)分別為-15和65,點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng):
①若點(diǎn)P運(yùn)動(dòng)到點(diǎn)B停止,則當(dāng)P、A、B中恰好有一個(gè)點(diǎn)為其余兩個(gè)點(diǎn)的“夢(mèng)想點(diǎn)”時(shí),求這個(gè)點(diǎn)表示的數(shù);
②若點(diǎn)P運(yùn)動(dòng)到B后,繼續(xù)沿?cái)?shù)軸向右運(yùn)動(dòng)的過程中,是否還存在點(diǎn)P、A、B中恰好有一個(gè)點(diǎn)為其余兩點(diǎn)的“夢(mèng)想點(diǎn)”的情況?若存在,請(qǐng)直接寫出此時(shí)以PA、PB為鄰邊長(zhǎng)的長(zhǎng)方形的周長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點(diǎn),以O(shè)A為半徑的⊙O經(jīng)過點(diǎn)D。
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com