【題目】已知在扇形中,圓心角,半徑

1)如圖1,過點(diǎn),交弧于點(diǎn),再過點(diǎn)于點(diǎn),則的長為_________的度數(shù)為_________;

2)如圖2,設(shè)點(diǎn)為弧上的動(dòng)點(diǎn),過點(diǎn)于點(diǎn),于點(diǎn),點(diǎn)分別在半徑,上,連接,則

①求點(diǎn)運(yùn)動(dòng)的路徑長是多少?

的長度是否是定值?如果是,請(qǐng)求出這個(gè)定值;若不是,請(qǐng)說明理由;

3)在(2)中的條件下,若點(diǎn)的外心,直接寫出點(diǎn)運(yùn)動(dòng)的路經(jīng)長.

【答案】1;(2)①;②是定值,為;(3

【解析】

1)先求出∠AOE,再解直角三角形,即可得出結(jié)論;
2)①當(dāng)點(diǎn)M與點(diǎn)O重合時(shí),∠PMB=30°,當(dāng)點(diǎn)N與點(diǎn)O重合時(shí),∠PNA=30°,進(jìn)而求出點(diǎn)P運(yùn)動(dòng)路徑所對(duì)的圓心角是120°-30°-30°=60°,最后用弧長公式即可得出結(jié)論;
②先判斷出點(diǎn)P,MO,N四點(diǎn)均在同一個(gè)圓,即⊙H上,進(jìn)而求出MK=,即可得出結(jié)論;

3)先判斷出三角形PMN的外接圓的圓心的運(yùn)動(dòng)軌跡,最后根據(jù)弧長公式即可得出結(jié)論.

解:(1)∵,∴

,∴,

,∴,

中,

,,

故答案為:,

2點(diǎn)在弧上運(yùn)動(dòng),其路徑也是一段弧,由題意可知,

當(dāng)點(diǎn)與點(diǎn)重合時(shí),,

當(dāng)點(diǎn)與點(diǎn)重合時(shí),

∴點(diǎn)運(yùn)動(dòng)路徑所對(duì)的圓心角是,

∴點(diǎn)運(yùn)動(dòng)的路徑長;

是定值;

連接,取的中點(diǎn),連接,

∵在中,點(diǎn)是斜邊的中點(diǎn),

∴根據(jù)圓的定義可知,點(diǎn)四點(diǎn)均在同一個(gè)圓,即上,

又∵,,

,

過點(diǎn),垂足為點(diǎn),

由垂徑定理得,,

∴在中,,則,

,是定值.

3)由(2)知,點(diǎn)四點(diǎn)共圓,

的外接圓的圓心,即:點(diǎn)和點(diǎn)重合,

,

∴點(diǎn)是以點(diǎn)為圓心,為半徑,

∴點(diǎn)運(yùn)動(dòng)路徑所對(duì)的圓心角是,

∴點(diǎn)運(yùn)動(dòng)路徑所對(duì)的圓心角是,

∴點(diǎn)運(yùn)動(dòng)的路經(jīng)長為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,,分別在邊,上,,相交于點(diǎn),若,,則的值是_________;若,,則的值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD為矩形,曲線L經(jīng)過點(diǎn)D.點(diǎn)Q是四邊形ABCD內(nèi)一定點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),作PMAB交曲線L于點(diǎn)M,連接QM

小東同學(xué)發(fā)現(xiàn):在點(diǎn)PA運(yùn)動(dòng)到B的過程中,對(duì)于x1AP的每一個(gè)確定的值,θQMP都有唯一確定的值與其對(duì)應(yīng),x1θ的對(duì)應(yīng)關(guān)系如表所示:

x1AP

0

1

2

3

4

5

θQMP

α

85°

130°

180°

145°

130°

小蕓同學(xué)在讀書時(shí),發(fā)現(xiàn)了另外一個(gè)函數(shù):對(duì)于自變量x2在﹣2≤x2≤2范圍內(nèi)的每一個(gè)值,都有唯一確定的角度θ與之對(duì)應(yīng),x2θ的對(duì)應(yīng)關(guān)系如圖2所示:

根據(jù)以上材料,回答問題:

1)表格中α的值為   

2)如果令表格中x1所對(duì)應(yīng)的θ的值與圖2x2所對(duì)應(yīng)的θ的值相等,可以在兩個(gè)變量x1x2之間建立函數(shù)關(guān)系.

在這個(gè)函數(shù)關(guān)系中,自變量是  ,因變量是  ;(分別填入x1x2

請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,并畫出這個(gè)函數(shù)的圖象;

根據(jù)畫出的函數(shù)圖象,當(dāng)AP3.5時(shí),x2的值約為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)邊上的一個(gè)動(dòng)點(diǎn).

1)如圖1,若是等邊三角形,以為邊在的同側(cè)作等邊,連接.試比較的大小,并說明理由;

2)如圖2,若中,,以為底邊在的同側(cè)作等腰,且,連接.試判斷的位置關(guān)系,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過點(diǎn)、

(1)、滿足的關(guān)系式及的值.

(2)當(dāng)時(shí),若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當(dāng)時(shí),在拋物線上是否存在點(diǎn),使的面積為1?若存在,請(qǐng)求出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖圖形都是由同樣大小的正方形“□”按照一定規(guī)律排列的,其中圖①中共有2個(gè)正方形,圖②中共有4個(gè)正方形,圖③中共有7個(gè)正方形,圖④中共有12個(gè)正方形,圖⑤中共有21個(gè)正方形,……,照此規(guī)律排列下去,則圖⑩中正方形的個(gè)數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).

(1)求反比例函數(shù)的關(guān)系式;

(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn).點(diǎn)和點(diǎn)關(guān)于軸對(duì)稱,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn).設(shè)點(diǎn)的坐標(biāo)為,過點(diǎn)軸的垂線交拋物線于點(diǎn),交直線于點(diǎn)

1)求拋物線的解析式;

2)連接,,當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),面積最大?最大面積是多少?并求出此時(shí)點(diǎn)的坐標(biāo);

3)在第問的前提下,在軸上找一點(diǎn),使值最小,求出的最小值并直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,點(diǎn). 沿直線折疊矩形,使點(diǎn)落在邊上,與點(diǎn)重合.分別以,所在的直線為軸,軸建立平面直角坐標(biāo)系,拋物線經(jīng)過兩點(diǎn).

1)求及點(diǎn)的坐標(biāo);

2)一動(dòng)點(diǎn)從點(diǎn)出發(fā),沿以每秒個(gè)單位長的速度向點(diǎn)運(yùn)動(dòng), 同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā),沿以每秒個(gè)單位長的速度向點(diǎn)運(yùn)動(dòng), 當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)為何值時(shí),以,,為頂點(diǎn)的三角形與相似?

3)點(diǎn)在拋物線對(duì)稱軸上,點(diǎn)在拋物線上,是否存在這樣的點(diǎn)與點(diǎn) N,使以,, 為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)與點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案