精英家教網 > 初中數學 > 題目詳情

用四個全等的矩形和一個小正方形拼成如圖所示的大正方形,已知大正方形的面積是144,小正方形的面積是4,若用x,y表示矩形的長和寬(xy),則下列關系式中不正確的是

[  ]
A.

xy=12.

B.

xy=2.

C.

xy=35.

D.

x2y2=144.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長都為3,另一種紙片的兩條直角邊長分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.
(1)請用三種方法(拼出的兩個圖形只要不全等就認為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點必須與方格紙中的小正方形頂點重合;畫圖時,要保留四塊直角三角形紙片的拼接痕跡);
(2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的面積各是多少;
(3)三種方法所拼得的平行四邊形的周長是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的周長各是多少.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長都為m厘米的大正方形,兩塊是邊長都為n厘米的小正方形,五塊是長寬分別是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代數式表示切痕的總長為
(6m+6n)
(6m+6n)
厘米;
(2)若每塊小矩形的面積為34.5厘米2,四個正方形的面積和為200厘米2,試求m+n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長都為m厘米的大正方形,兩塊是邊長都為n厘米的小正方形,五塊是長寬分別是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代數式表示切痕的總長為______厘米;
(2)若每塊小矩形的面積為34.5厘米2,四個正方形的面積和為200厘米2,試求m+n的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,將一張矩形大鐵皮切割成九塊,切痕如下圖虛線所示,其中有兩塊是邊長都為m厘米的大正方形,兩塊是邊長都為n厘米的小正方形,五塊是長寬分別是m厘米、n厘米的全等小矩形,且m>n.
(1)用含m、n的代數式表示切痕的總長為______厘米;
(2)若每塊小矩形的面積為34.5厘米2,四個正方形的面積和為200厘米2,試求m+n的值.
精英家教網

查看答案和解析>>

科目:初中數學 來源:2012年學大教育中考數學模擬試卷(三)(解析版) 題型:解答題

如圖所示,有兩種形狀不同的直角三角形紙片各兩塊,其中一種紙片的兩條直角邊長都為3,另一種紙片的兩條直角邊長分別為1和3.圖1、圖2、圖3是三張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1.
(1)請用三種方法(拼出的兩個圖形只要不全等就認為是不同的拼法)將圖中所給四塊直角三角形紙片拼成平行四邊形(非矩形),每種方法要把圖中所給的四塊直角三角形紙片全部用上,互不重疊且不留空隙,并把你所拼得的圖形按實際大小畫在圖1,圖2,圖3的方格紙上(要求:所畫圖形各頂點必須與方格紙中的小正方形頂點重合;畫圖時,要保留四塊直角三角形紙片的拼接痕跡);
(2)三種方法所拼得的平行四邊形的面積是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的面積各是多少;
(3)三種方法所拼得的平行四邊形的周長是否是定值?若是定值,請直接寫出這個定值;若不是定值,請直接寫出三種方法所拼得的平行四邊形的周長各是多少.

查看答案和解析>>

同步練習冊答案