【題目】如圖所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分別是∠AOC,∠BOD的平分線,∠MON等于度.

【答案】135
【解析】∵∠AOC=30°,OM是∠AOC的平分線,
∴∠MOC= ∠AOC= ×30°=15°,
∵∠BOD=60°,ON是∠BOD的平分線,
∴∠DON= ∠BOD= ×60°=30°.
∵∠AOB是平角,∠AOC=30°,∠BOD=60°,
∴∠COD=∠AOB-∠AOC-∠BOD=180°-30°-60°=90°.
∵∠MOC=15°,∠COD=90°,∠DON=30°,
∴∠MON=∠MOC+∠COD+∠DON=15°+90°+30°=135°.
所以答案是:135°.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用角的平分線和角的運(yùn)算的相關(guān)知識可以得到問題的答案,需要掌握從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線;角之間可以進(jìn)行加減運(yùn)算;一個(gè)角可以用其他角的和或差來表示.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,點(diǎn)D,E,F(xiàn)分別在AB,BC,AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.

(1)如圖1,當(dāng)DE=DF時(shí),圖1中是否存在與AB相等的線段?若存在,請找出,并加以證明;若不存在,說明理由;

(2)如圖2,當(dāng)DE=kDF(其中0<k<1)時(shí),若∠A=90°,AF=m,求BD的長(用含k,m的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知多項(xiàng)式2x2bxc分解因式為2(x3)(x1),則b,c的值為(  )

A. b3,c=-1 B. b=-6,c2

C. b=-6c=-4 D. b=-4,c=-6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,EG∥AF,請你從下面三個(gè)條件中,再選出兩個(gè)作為已知條件,另一個(gè)作為結(jié)論,推出一個(gè)正確的命題.并證明這個(gè)命題(只寫出一種情況)①AB=AC ②DE=DF ③BE=CF
已知:EG∥AF, ,
求證:
證明:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】荔枝是嶺南一帶的特色時(shí)令水果.今年5月份荔枝一上市,某水果店的老板用3000元購進(jìn)了一批荔枝,由于荔枝剛在果園采摘比較新鮮,前兩天他以高于進(jìn)價(jià)40% 的價(jià)格共賣出150千克,由于荔枝保鮮期短,第三天他發(fā)現(xiàn)店里的荔枝賣相已不大好,于是果斷地將剩余荔枝以低于進(jìn)價(jià)20%的價(jià)格全部售出,前后一共獲利750元.

(1)若購進(jìn)的荔枝為千克,則這批荔枝的進(jìn)貨價(jià)為 ;(用含的式子來表示)

(2)求該水果店的老板這次購進(jìn)荔枝多少千克.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)5a2b÷(﹣ ab)(2ab22
(2)已知x2﹣5x﹣14=0,求(x﹣1)(2x﹣1)﹣(x+1)2+1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】木棒長為1.5m,則它的正投影的長一定( 。

A.大于1.5mB.小于1.5m

C.等于1.5mD.小于或等于1.5m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一組數(shù)據(jù)x1 , x2 , …,xn的方差是4,則另一組數(shù)據(jù)x1+3,x2+3,…,xn+3的方差是(  )
A.4
B.7
C.8
D.19

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2-4ax+a2+2(a<0)圖像的頂點(diǎn)G在直線AB上,其中A(,0)、B(0,3),

對稱軸與x軸交于點(diǎn)E.

(1)求二次函數(shù)y=ax2-4ax+a2+2的關(guān)系式;

(2)點(diǎn)P在對稱軸右側(cè)的拋物線上,且AP平分四邊形GAEP的面積,求點(diǎn)P坐標(biāo);

(3)在x軸上方,是否存在整數(shù)m,使得當(dāng)< x ≤時(shí),拋物線y隨x增大而增大,若存在,求出所有滿足條件的m值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案