【題目】如圖,已知一次函數(shù)y1=﹣x+a與x軸、y軸分別交于點(diǎn)D、C兩點(diǎn)和反比例函數(shù) 交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3)點(diǎn)B的坐標(biāo)是(3,m)
(1)求a,k,m的值;
(2)求C、D兩點(diǎn)的坐標(biāo),并求△AOB的面積.
【答案】
(1)解:∵反比例函數(shù) 經(jīng)過A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3),
∴3= ,
∴k=3,
而點(diǎn)B的坐標(biāo)是(3,m),
∴m= =1,
∵一次函數(shù)y1=﹣x+a經(jīng)過A點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3),
∴3=﹣1+a,
∴a=4
(2)解:∵y1=﹣x+4,
當(dāng)x=0時(shí),y=4,
當(dāng)y=0時(shí),x=4,
∴C的坐標(biāo)為(0,4),D的坐標(biāo)為(4,0),
∴S△AOB=S△COB﹣S△COA= ×4×3﹣ ×4×1=4.
【解析】(1)由于已知一次函數(shù)y1=﹣x+a和反比例函數(shù) 交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3),把A的坐標(biāo)代入反比例函數(shù)解析式中即可確定k的值,然后利用解析式即可確定點(diǎn)B的坐標(biāo),最后利用A或B坐標(biāo)即可確定a的值;(2)利用(1)中求出的直線的解析式可以確定C,D的坐標(biāo),然后利用面積的割補(bǔ)法可以求出△AOB的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.
證明:連結(jié)DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b﹣a,
∵S四邊形ADCB=S△ACD+S△ABC= 12 b2+ 12 ab.
又∵S四邊形ADCB=S△ADB+S△DCB= 12 c2+ 12 a(b﹣a)
∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,沿過B點(diǎn)的一條直線BE折疊這個(gè)三角形, 使C點(diǎn)與AB邊上的一點(diǎn)D重合.
(1)當(dāng)∠A滿足什么條件時(shí),點(diǎn)D恰為AB的中點(diǎn)?寫出一個(gè)你認(rèn)為適當(dāng)?shù)臈l件,并利用此條件證明D為AB的中點(diǎn);
(2)在(1)的條件下,若DE=1,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面文字,然后按要求解題.
例:1+2+3+…+100=?如果一個(gè)一個(gè)順次相加顯然太繁,我們仔細(xì)分析這100個(gè)連續(xù)自然數(shù)的規(guī)律和特點(diǎn),可以發(fā)現(xiàn)運(yùn)用加法的運(yùn)算律,是可以大大簡化計(jì)算,提高計(jì)算速度的.
因?yàn)?/span>1+100=2+99=3+98=…=50+51=101,所以將所給算式中各加數(shù)經(jīng)過交換、結(jié)合以后,可以很快求出結(jié)果.
解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)==5050.
(1)補(bǔ)全例題解題過程;
(2)計(jì)算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,BC>AC,點(diǎn)D在BC上,且DC=AC,∠ACB的平分線CF交AD于點(diǎn)F.點(diǎn)E是AB的中點(diǎn),連接EF.
(1)求證:EF∥BC;
(2)若△ABD的面積是6,求四邊形BDFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課外活動時(shí)李老師來教室布置作業(yè),有一道題只寫了“學(xué)校校辦廠需制作一塊廣告牌,請來兩名工人.已知師傅單獨(dú)完成需4天,徒弟單獨(dú)完成需6天”,就因校長叫他聽一個(gè)電話而離開教室.
(1)調(diào)皮的小劉說:“讓我試一試,”上去添了“兩人合作需要幾天完成?”請你就小劉添法進(jìn)行解答.
(2)李老師回教室后選了兩位同學(xué)的問題,合起來在黑板上寫出:現(xiàn)由徒弟先做1天,再兩人合作,完成后共得到報(bào)酬450元,如果按各完成工作量計(jì)算報(bào)酬,那么該如何分配?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為﹣20,B點(diǎn)對應(yīng)的數(shù)為100.
(1)請寫出與A,B兩點(diǎn)距離相等的點(diǎn)M所對應(yīng)的數(shù) .
(2)現(xiàn)有一只電子螞蟻P從B點(diǎn)出發(fā),以6單位/秒的速度向左運(yùn)動,同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度向右運(yùn)動,x秒后兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,請列方程求出x,并指出點(diǎn)C表示的數(shù).
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以6單位/秒的速度向左運(yùn)動,同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以4單位/秒的速度也向左運(yùn)動,y秒后兩只電子螞蟻在數(shù)軸上的D點(diǎn)相遇,請列方程求出y并指出點(diǎn)D表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BC為⊙O的直徑,A為圓上一點(diǎn),點(diǎn)F為 的中點(diǎn),延長AB、AC,與過F點(diǎn)的切線交于D、E兩點(diǎn).
(1)求證:BC∥DE;
(2)若BC:DF=4:3,求tan∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,學(xué)生的注意力隨著教師講課時(shí)間的變化而變化,講課開始時(shí)學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的狀態(tài),隨后學(xué)生的注意力開始分散,經(jīng)過實(shí)驗(yàn)分析可知,一般地,學(xué)生的注意力y隨時(shí)間t的變化情況如下表:
上課時(shí)間t(分) | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
學(xué)生的注意力y | 100 | 191 | 240 | 240 | 240 | 205 | 170 | 135 | 100 | 65 |
(1)講課開始后第5分鐘時(shí)與講課開始后第25分鐘時(shí)比較,何時(shí)學(xué)生的注意力更集中?
(2)從表中觀察,講課開始后,學(xué)生的注意力最集中的時(shí)間是那一段?
(3)從表中觀察,講課開始后,學(xué)生的注意力從第幾分鐘起開始下降?猜想注意力下降過程中y與t的關(guān)系,并用式子表示出來。
用(3)題中的關(guān)系式,求當(dāng)t=27分時(shí),學(xué)生的注意力y的值是多少,F(xiàn)有一道數(shù)學(xué)難題,需要講解20分鐘,為了效果更好,要求學(xué)生的注意力最低達(dá)到190,那么老師能否在學(xué)生注意力達(dá)到所需狀態(tài)下講完這道題目,試著說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com