【題目】為了更好地貫徹落實(shí)國家關(guān)于“強(qiáng)化體育課和課外鍛煉,促進(jìn)青少年身心健康、體魄強(qiáng)健”的精神,某校大力開展體育活動(dòng).該校九年級(jí)三班同學(xué)組建了足球、籃球、乒乓球、跳繩四個(gè)體育活動(dòng)小組.經(jīng)調(diào)查,全班同學(xué)全員參與,各活動(dòng)小組人數(shù)分布情況的扇形圖和條形圖如下:

(1)求該班學(xué)生人數(shù);
(2)請(qǐng)你補(bǔ)全條形圖;
(3)求跳繩人數(shù)所占扇形圓心角的度數(shù).

【答案】
(1)解:由扇形圖可知,乒乓球小組人數(shù)占全班人數(shù)的

由條形圖可知,乒乓球小組人數(shù)為12.

故全班人數(shù)為


(2)解:喜歡籃球的人數(shù)是48×25%=12(人),

喜歡跳繩的人數(shù)是48﹣16﹣12﹣12=8(人).


(3)解:因?yàn)樘K小組人數(shù)占全班人數(shù)的

所以,它所占扇形圓心角的大小為


【解析】(1)根據(jù)喜歡乒乓球的有12人,對(duì)應(yīng)的扇形的圓心角是90°,則對(duì)應(yīng)的比例是 ,據(jù)此即可求得總?cè)藬?shù);(2)用總?cè)藬?shù)乘以對(duì)應(yīng)的百分比即可求得喜歡籃球的人數(shù),利用總數(shù)減去其它組的人數(shù)求得喜歡跳繩的人數(shù),從而補(bǔ)全直方圖;(3)利用360°乘以對(duì)應(yīng)的比例即可求解.
【考點(diǎn)精析】掌握扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖是解答本題的根本,需要知道能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A.①和②
B.②和③
C.①和③
D.②和④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程或方程組解應(yīng)用題:
為祝賀北京成功獲得2022年冬奧會(huì)主辦權(quán),某工藝品廠準(zhǔn)備生產(chǎn)紀(jì)念北京申辦冬奧會(huì)成功的“紀(jì)念章”和“冬奧印”.生產(chǎn)一枚“紀(jì)念章”需要用甲種原料4盒,乙種原料3盒;生產(chǎn)一枚“冬奧印”需要用甲種原料5 盒,乙種原料10 盒.該廠購進(jìn)甲、乙兩種原料分別為20000盒和30000盒,如果將所購進(jìn)原料正好全部都用完,那么能生產(chǎn)“紀(jì)念章”和“冬奧印”各多少枚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系 xOy中,對(duì)于點(diǎn)P(x,y),以及兩個(gè)無公共點(diǎn)的圖形W1和W2 , 若在圖形W1和W2上分別存在點(diǎn)M (x1 , y1 )和N (x2 , y2 ),使得P是線段MN的中點(diǎn),則稱點(diǎn)M 和N被點(diǎn)P“關(guān)聯(lián)”,并稱點(diǎn)P為圖形W1和W2的一個(gè)“中位點(diǎn)”,此時(shí)P,M,N三個(gè)點(diǎn)的坐標(biāo)滿足x= ,y=
(1)已知點(diǎn)A(0,1),B(4,1),C(3,﹣1),D(3,﹣2),連接AB,CD.
①對(duì)于線段AB和線段CD,若點(diǎn)A和C被點(diǎn)P“關(guān)聯(lián)”,則點(diǎn)P的坐標(biāo)為;
②線段AB和線段CD的一“中位點(diǎn)”是Q (2,﹣ ),求這兩條線段上被點(diǎn)Q“關(guān)聯(lián)”的兩個(gè)點(diǎn)的坐標(biāo);
(2)如圖1,已知點(diǎn)R(﹣2,0)和拋物線W1:y=x2﹣2x,對(duì)于拋物線W1上的每一個(gè)點(diǎn)M,在拋物線W2上都存在點(diǎn)N,使得點(diǎn)N和M 被點(diǎn)R“關(guān)聯(lián)”,請(qǐng)?jiān)趫D1 中畫出符合條件的拋物線W2;
(3)正方形EFGH的頂點(diǎn)分別是E(﹣4,1),F(xiàn)(﹣4,﹣1),G(﹣2,﹣1),H(﹣2,1),⊙T的圓心為T(3,0),半徑為1.請(qǐng)?jiān)趫D2中畫出由正方形EFGH和⊙T的所有“中位點(diǎn)”組成的圖形(若涉及平面中某個(gè)區(qū)域時(shí)可以用陰影表示),并直接寫出該圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式 ≥1,并把它的解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: ﹣( ﹣1)0+( 2﹣4sin45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質(zhì)和判定方法.我們給出如下定義:如圖,四邊形ABCD中,AB=AD,CB=CD像這樣兩組鄰邊分別相等的四邊形叫做“箏形”;

(1)小文認(rèn)為菱形是特殊的“箏形”,你認(rèn)為他的判斷正確嗎?
(2)小文根據(jù)學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),通過觀察、實(shí)驗(yàn)、歸納、類比、猜想、證明等方法,對(duì)AB≠BC的“箏形”的性質(zhì)和判定方法進(jìn)行了探究.下面是小文探究的過程,請(qǐng)補(bǔ)充完成:
①他首先發(fā)現(xiàn)了這類“箏形”有一組對(duì)角相等,并進(jìn)行了證明,請(qǐng)你完成小文的證明過程.
已知:如圖,在”箏形”ABCD中,AB=AD,CB=CD.
求證:∠ABC=∠ADC.
證明:②小文由①得到了這類“箏形”角的性質(zhì),他進(jìn)一步探究發(fā)現(xiàn)這類“箏形”還具有其它性質(zhì),請(qǐng)?jiān)賹懗鲞@類“箏形”的一條性質(zhì)(除“箏形”的定義外);
③繼性質(zhì)探究后,小文探究了這類“箏形”的判定方法,寫出這類“箏形”的一條判定方法(除“箏形”的定義外):

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D是 AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,過點(diǎn)A(﹣2,0)的直線交y軸正半軸于點(diǎn)B,將直線AB繞著點(diǎn)順時(shí)針旋轉(zhuǎn)90°后,分別與x軸、y軸交于點(diǎn)D、C.

(1)若OB=4,求直線AB的函數(shù)關(guān)系式;
(2)連接BD,若△ABD的面積是5,求點(diǎn)B的運(yùn)動(dòng)路徑長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案