若扇形面積為3π,半徑為3,則弧長(zhǎng)為    ,圓心角是   
【答案】分析:先根據(jù)扇形的面積公式S=lR求出弧長(zhǎng),然后根據(jù)弧長(zhǎng)公式l=計(jì)算圓心角.
解答:解:根據(jù)題意得,3π=×3×l,
∴l(xiāng)=2π,
∵2π=,
∴n=120°.
故答案為2π,120°.
點(diǎn)評(píng):本題考查了扇形的面積公式:S=,其中n為扇形的圓心角的度數(shù),R為圓的半徑),或S=lR,l為扇形的弧長(zhǎng),R為半徑.也考查了弧長(zhǎng)公式l=
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系中,拋物線y=
1
4
x2-6
與直線y=
1
2
x
相交于A,B兩點(diǎn).
(1)求線段AB的長(zhǎng);
(2)若一個(gè)扇形的周長(zhǎng)等于(1)中線段AB的長(zhǎng),當(dāng)扇形的半徑取何值時(shí),扇形的面積最大,最大面積是多少;
(3)如圖2,線段AB的垂直平分線分別交x軸、y軸于C,D兩點(diǎn),垂足為點(diǎn)M,分別求出OM,OC,OD的長(zhǎng),并驗(yàn)證等式
1
OC2
+
1
OD2
=
1
OM2
是否成立;
(4)如圖3,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,設(shè)BC=a,AC=b,AB=c.CD=b,試說(shuō)明:
1
a2
+
1
b2
=
1
h2

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=x2-2x-3的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),⊙M是△ABC的外接圓.
(1)求陰影部分扇形AMC的面積;
(2)在x軸的正半軸上有一點(diǎn)P,作PQ⊥x軸交BC于Q,設(shè)PQ=K.
①設(shè)△OPQ的面積為S,求S關(guān)于K的函數(shù)關(guān)系式,并求出S的最大值;
②△CMQ能否與△AOC相似?若能,求出K的值;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:101網(wǎng)校同步練習(xí) 初三數(shù)學(xué) 北師大(新課標(biāo)2001/3年初審) 北師大版 題型:044

如圖,在直角坐標(biāo)系xOy中,已知菱形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),頂點(diǎn)B在y軸正半軸上,OA邊在直線y=x上,AB邊在直線y=-x+上.

(1)根據(jù)題意,直接寫(xiě)出菱形頂點(diǎn),O、A、B、C的坐標(biāo),以及邊長(zhǎng)和∠AOC的度數(shù);

(2)在OB上有一動(dòng)點(diǎn)P,以O(shè)為圓心,OP為半徑畫(huà)弧MN,分別交OA、OC于點(diǎn)M、N(M、N可以與A、C重合),作⊙Q與AB、BC、弧MN都相切.設(shè)⊙Q的半徑為R,OP的長(zhǎng)為y,求y與R之間的函數(shù)關(guān)系式;

(3)以O(shè)為圓心,OA為半徑作扇形OAC,請(qǐng)問(wèn)在菱形OABC中,除去扇形OAC后的剩余部分內(nèi),是否可以作出一個(gè)圓,使所得的圓是以扇形OAC為側(cè)面的圓錐的底面,若存在,求出這個(gè)圓的面積;若不存在說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-3的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),⊙M是△ABC的外接圓.
(1)求陰影部分扇形AMC的面積;
(2)在x軸的正半軸上有一點(diǎn)P,作PQ⊥x軸交BC于Q,設(shè)PQ=K.
①設(shè)△OPQ的面積為S,求S關(guān)于K的函數(shù)關(guān)系式,并求出S的最大值;
②△CMQ能否與△AOC相似?若能,求出K的值;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年湖南省婁底市初中畢業(yè)學(xué)業(yè)聯(lián)考數(shù)學(xué)試卷(一)(解析版) 題型:解答題

如圖,已知二次函數(shù)y=x2-2x-3的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于C點(diǎn),⊙M是△ABC的外接圓.
(1)求陰影部分扇形AMC的面積;
(2)在x軸的正半軸上有一點(diǎn)P,作PQ⊥x軸交BC于Q,設(shè)PQ=K.
①設(shè)△OPQ的面積為S,求S關(guān)于K的函數(shù)關(guān)系式,并求出S的最大值;
②△CMQ能否與△AOC相似?若能,求出K的值;若不能,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案