把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點(diǎn)G在對(duì)角線AC,并把正方形OFGE繞頂點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角為а.
(1)如圖②,當(dāng)а=90°時(shí),請(qǐng)直接寫出線段DE與BF的數(shù)量關(guān)系和位置關(guān)系;
(2)如圖③,當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明;若發(fā)生改變,請(qǐng)舉例說明;
(3)如圖④,將圖①、圖③中的兩個(gè)正方形都改為矩形,其他條件不變,設(shè)AB=kAD(k>0),當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明;若發(fā)生改變,請(qǐng)寫出改變后的新結(jié)論,并給出證明.

解:(1)DE=BF,DE⊥BF;理由如下:
∵四邊形AFGE、四邊形ABCD都是正方形,
∴AE=AF,AD=AB,∠DAE=∠BAF=90°,
∴△AED≌△AFB,得DE=BF,∠DEA=∠AFB;
由于∠ABF、∠AFB互余,因此∠ABF、∠DEA互余,即∠DEA+∠ABF=90°,故DE⊥BF;
因此DE、BF的數(shù)量關(guān)系為相等,位置關(guān)系為垂直.

(2)不改變;
證明:如圖(3),連接DE,BF,BD;
同(1)可得:AE=AF,AD=AB,∠DAE=∠BAF(旋轉(zhuǎn)角),
∴△AED≌△AFB,得DE=BF,∠EDA=∠FBA;
由于∠EDA+∠ADB+∠DBF=∠ABF+∠ADB+∠DBF=90°,即∠EDB+∠DBF=90°,
故DE⊥BF,所以(1)的結(jié)論依然成立.


(3)BF=kDE,DE⊥BF;理由如下:
∵AB:AD=AF:AE=k,且∠DAE=∠BAF,
∴△ADE∽△ABF,且相似比為1:k,
故BF=kDE,∠EDA=∠FBA;
同(2)可證得DE⊥BF;
故BF、DE的數(shù)量關(guān)系為:BF=kDE,位置關(guān)系為:垂直.
分析:(1)此題可通過全等三角形來求解;首先證△AED≌△AFB,然后根據(jù)全等三角形得到的等角和等邊來進(jìn)行判斷.
(2)思路同(1),依然是根據(jù)△AED≌△AFB來得到所求的結(jié)論.
(3)此題要通過相似三角形來解,首先根據(jù)已知條件,易證得AE、AF與AD、AB對(duì)應(yīng)成比例,而∠DAE=∠FAB,即可證得△AED∽△AFB,由此得DE、BF的比例關(guān)系,在求它們的位置關(guān)系時(shí),可參照(2)的解法.
點(diǎn)評(píng):此題主要考查的是全等三角形及相似三角形的判定和性質(zhì),還涉及到正方形、矩形的性質(zhì),考查了學(xué)生對(duì)知識(shí)的綜合應(yīng)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點(diǎn)G在對(duì)角線AC,并把正方形OFGE繞頂點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角為а.
(1)如圖②,當(dāng)а=90°時(shí),請(qǐng)直接寫出線段DE與BF的數(shù)量關(guān)系和位置關(guān)系;
(2)如圖③,當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明.若發(fā)生改變,請(qǐng)舉例說明;
(3)如圖④,將圖①、圖③中的兩個(gè)正方形都改為矩形,其他條件不變,設(shè)AB=kAD(k>0),當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明.若發(fā)生改變,請(qǐng)寫出改變后的新結(jié)論,并給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:福建省期中題 題型:解答題

把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點(diǎn)G在對(duì)角線AC,并把正方形OFGE繞頂點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角為а。
(1)如圖②,當(dāng)а=90°時(shí),請(qǐng)直接寫出線段DE與BF的數(shù)量關(guān)系和位置關(guān)系;
(2)如圖③,當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明。若發(fā)生改變,請(qǐng)舉例說明;
(3)如圖④,將圖①、圖③中的兩個(gè)正方形都改為矩形,其他條件不變,設(shè)AB=kAD(k>0),當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明。若發(fā)生改變,請(qǐng)寫出改變后的新結(jié)論,并給出證明。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點(diǎn)G在對(duì)角線AC,并把正方形OFGE繞頂點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角為а.
(1)如圖②,當(dāng)а=90°時(shí),請(qǐng)直接寫出線段DE與BF的數(shù)量關(guān)系和位置關(guān)系;
(2)如圖③,當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明;若發(fā)生改變,請(qǐng)舉例說明;
(3)如圖④,將圖①、圖③中的兩個(gè)正方形都改為矩形,其他條件不變,設(shè)AB=kAD(k>0),當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明;若發(fā)生改變,請(qǐng)寫出改變后的新結(jié)論,并給出證明.

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把正方形OFGE紙板按如圖①方式放置在正方形紙板ABCD上,頂點(diǎn)G在對(duì)角線AC,并把正方形OFGE繞

頂點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),旋轉(zhuǎn)角為а。(1)如圖②,當(dāng)а=90°時(shí),請(qǐng)直接寫出線段DE與BF的數(shù)量關(guān)

系和位置關(guān)系;(2)如圖③,當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明。若發(fā)

生改變,請(qǐng)舉例說明;(3)如圖④,將圖①、圖③中的兩個(gè)正方形都改為矩形,其他條件不變,設(shè)AB=kAD(k>0),

當(dāng)0°<а<90°時(shí),(1)中的結(jié)論是否發(fā)生改變?若不變,請(qǐng)給出證明。若發(fā)生改變,

請(qǐng)寫出改變后的新結(jié)論,并給出證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案