【題目】如圖,點(diǎn)在數(shù)軸上表示的數(shù)是-8,點(diǎn)在數(shù)軸上表示的數(shù)是16.若點(diǎn)以6個(gè)單位長(zhǎng)度/秒的速度向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)以2個(gè)單位長(zhǎng)度/秒的速度向左勻速運(yùn)動(dòng).問(wèn):當(dāng)時(shí),運(yùn)動(dòng)時(shí)間為多少秒?
A. 2秒B. 13.4秒C. 2秒或4秒D. 2秒或6秒
【答案】C
【解析】
分點(diǎn)B在右邊,點(diǎn)A在左邊和點(diǎn)B在左邊,點(diǎn)A在右邊兩種可能.用t表示AB的長(zhǎng)度,根據(jù)AB=8列方程求解即可.
設(shè)當(dāng)時(shí),運(yùn)動(dòng)時(shí)間為t秒,
根據(jù)題意A、B對(duì)應(yīng)數(shù)字分別是:-8+6t和16-2t,
當(dāng)點(diǎn)B在右邊,點(diǎn)A在左邊時(shí),AB =16-2t-(-8+6t)=24-8t,
∵AB=8,∴24-8t=8,∴t=2
當(dāng)點(diǎn)B在左邊,點(diǎn)A在右邊時(shí),AB =-8+6t -(16-2t)=-24+8t,
∵AB=8,∴-24+8t=8,∴t=4,
∴當(dāng)時(shí),運(yùn)動(dòng)時(shí)間為2秒或4秒
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知一個(gè)角的補(bǔ)角比它的余角的 3 倍大 30°,求這個(gè)角的度數(shù);
(2)如圖,點(diǎn) C、D在線段 AB上, D是線段 AB的中點(diǎn), AC AD , AB6,求線段 CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC三條邊的長(zhǎng)度分別是,,,記△ABC的周長(zhǎng)為C△ABC.
(1)當(dāng)x=2時(shí),△ABC的最長(zhǎng)邊的長(zhǎng)度是 (請(qǐng)直接寫(xiě)出答案);
(2)請(qǐng)求出C△ABC(用含x的代數(shù)式表示,結(jié)果要求化簡(jiǎn));
(3)我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶曾提出利用三角形的三邊長(zhǎng)求面積的秦九韶公式:S=.其中三角形邊長(zhǎng)分別為a,b,c,三角形的面積為S.
若x為整數(shù),當(dāng)C△ABC取得最大值時(shí),請(qǐng)用秦九韶公式求出△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)習(xí)相似三角形和解直角三角形的相關(guān)內(nèi)容后,張老師請(qǐng)同學(xué)們交流這樣的一個(gè)問(wèn)題:“如上圖,在正方形網(wǎng)格上有△A1B1C1和△A2B2C2 , 這兩個(gè)三角形是否相似?”,那么你認(rèn)為△A1B1C1和△A2B2C2 , (相似或不相似);理由是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長(zhǎng),那么稱這個(gè)三角形為“有趣三角形”,這條中線稱為“有趣中線”。如圖,在三角形ABC中,∠C=90°,較短的一條直角邊BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中線”的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖AB∥CD.∠1=∠2,∠3=∠4,試說(shuō)明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠ ( )
∵∠3=∠4(已知)
∴∠3=∠ ( )
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(
即∠ =∠ ( )
∴∠3=∠
∴AD∥BE( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,要得到△ABD≌△ACE,從下列條件中補(bǔ)選一個(gè),則錯(cuò)誤的是( )
A.AB=AC B.DB=EC C.∠ADB=∠AEC D.∠B=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以線段OA為邊在第四象限內(nèi)作等邊三角形△AOB,點(diǎn)C為x正半軸上一動(dòng)點(diǎn)(OC>1),連接BC,以線段BC為邊在第四象限內(nèi)作等邊三角形△CBD,連接DA并延長(zhǎng),交y軸于點(diǎn)E.
(1)求證:△OBC≌△ABD
(2)在點(diǎn)C的運(yùn)動(dòng)過(guò)程中,∠CAD的度數(shù)是否會(huì)變化?如果不變,請(qǐng)求出∠CAD的度數(shù);如果變化,請(qǐng)說(shuō)明理由.
(3)當(dāng)點(diǎn)C運(yùn)動(dòng)到什么位置時(shí),以A,E,C為頂點(diǎn)的三角形是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A(2,5)在反比例函數(shù)y= 的圖象上,過(guò)點(diǎn)A的直線y=x+b交x軸于點(diǎn)B.
(1)求k和b的值;
(2)求△OAB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com