【題目】如圖,一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,則函數(shù)y=ax2+(b﹣1)x+c的圖象可能是( )

A.
B.
C.
D.

【答案】A
【解析】解:∵一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,

∴方程ax2+(b﹣1)x+c=0有兩個不相等的根,

∴函數(shù)y=ax2+(b﹣1)x+c與x軸有兩個交點,

又∵﹣ >0,a>0

∴﹣ =﹣ + >0

∴函數(shù)y=ax2+(b﹣1)x+c的對稱軸x=﹣ >0,

∴A符合條件,

故選A.

由一次函數(shù)y1=x與二次函數(shù)y2=ax2+bx+c圖象相交于P、Q兩點,得出方程ax2+(b﹣1)x+c=0有兩個不相等的根,進(jìn)而得出函數(shù)y=ax2+(b﹣1)x+c與x軸有兩個交點,根據(jù)方程根與系數(shù)的關(guān)系得出函數(shù)y=ax2+(b﹣1)x+c的對稱軸x=﹣ >0,即可進(jìn)行判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的兩邊ABAC的垂直平分線分別交BCDE,若∠BAC+∠DAE=150°,則∠BAC的度數(shù)是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E是正方形ABCD內(nèi)的一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉(zhuǎn)90°到△CBE′的位置.若AE=1,BE=2,CE=3,求EE′的長?并求出∠BE′C的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一中學(xué)有學(xué)生3000名,2016年母親節(jié),曉彤為了調(diào)查本校大約有多少學(xué)生知道自己母親的生日,隨機(jī)調(diào)查了200名學(xué)生,有20名同學(xué)不知道自己母親生日,關(guān)于這個數(shù)據(jù)收集和處理的問題,下列說法錯誤的是(
A.個體是該校每一位學(xué)生
B.本校約有300名學(xué)生不知道自己母親的生日
C.調(diào)查的方式是抽樣調(diào)查
D.樣本是隨機(jī)調(diào)查的200名學(xué)生是否知道自己母親的生日

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由6個正方形拼成的一個長方形,如果最小的正方形的邊長為1

()能否求出拼成的長方形的面積?____(不能”);

()若能,請你寫出拼成的長方形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,已知ABBCCA4 cm,點P、Q分別從BC兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1 cm/s;點Q沿CAAB向終點B運動,速度為2 cm/s,設(shè)它們運動的時間為x(s),當(dāng)x__________BPQ是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°.點D是AB中點,點E為邊AC上一點,連接CD,DE,以DE為邊在DE的左側(cè)作等邊三角形DEF,連接BF.

(1)△BCD的形狀為;
(2)隨著點E位置的變化,∠DBF的度數(shù)是否變化?并結(jié)合圖說明你的理由;
(3)當(dāng)點F落在邊AC上時,若AC=6,請直接寫出DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題3tan30°﹣|﹣2|+ +(﹣1)2017;
(1)計算:3tan30°﹣|﹣2|+ +(﹣1)2017;
(2)解方程: = ﹣2.

查看答案和解析>>

同步練習(xí)冊答案