【題目】如圖,正方形中邊長為上一點(diǎn),且,邊上的一個(gè)動點(diǎn),連接,以為邊向右側(cè)作等邊,連接,則的最小值為__________

【答案】

【解析】

由題意分析可知,點(diǎn)F為主動點(diǎn),G為從動點(diǎn),所以以點(diǎn)E為旋轉(zhuǎn)中心構(gòu)造全等關(guān)系,得到點(diǎn)G的運(yùn)動軌跡,之后通過垂線段最短構(gòu)造直角三角形獲得CG最小值.

由題意可知,點(diǎn)F是主動點(diǎn),點(diǎn)G是從動點(diǎn),點(diǎn)F在線段上運(yùn)動,點(diǎn)G也一定在直線軌跡上運(yùn)動

將△EFB繞點(diǎn)E旋轉(zhuǎn)60°,使EFEG重合,得到△EFB≌△EHG

從而可知△EBH為等邊三角形,點(diǎn)G在垂直于HE的直線HN

CMHN,則CM即為CG的最小值

EPCM,可知四邊形HEPM為矩形,

CMMPCPHEECBEEC=1.5+=

故答案為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A-2,-1)、B1,n)兩點(diǎn)。

(1)利用圖中條件求反比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)D,E分別在邊AB、AC上,DCBE相交于點(diǎn)O,且DO2,BODC6,OE3

1)求證:DEBC;

2)如果四邊形BCED的面積比ADE的面積大12,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解方程:(x+1)(x+3)=15

2)解方程:3x22x2

3)解不等式組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),yx的增大而增大,且-2≤x≤1時(shí),y的最大值為9,則a的值為  

A. 1 B. - C. D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD的對角線AC、BD相交于點(diǎn)O,下列條件中,不能判定四邊形ABCD是平行四邊形的是( 。

A.

B. ,

C.

D. ,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),分別以AB、ACCB為底作頂角為120°的等腰三角形,頂角頂點(diǎn)分別為DE、F(點(diǎn)EFAB的同側(cè),點(diǎn)D在另一側(cè))

1)如圖1,若點(diǎn)CAB的中點(diǎn),則∠CED=______°;

2)如圖2.若點(diǎn)C不是AB的中點(diǎn)

①求證:DEF為等邊三角形;

②連接CD,若∠ADC=90°,AD=,請求出DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點(diǎn)P是弦BC上一動點(diǎn)(不與端點(diǎn)重合),過點(diǎn)PPEAB于點(diǎn)E,延長EP于點(diǎn)F,交過點(diǎn)C的切線于點(diǎn)D

1)求證:△DCP是等腰三角形;

2)若OA6,∠CBA30°.

當(dāng)OEEB時(shí),求DC的長;

當(dāng)的長為多少時(shí),以點(diǎn)B,O,C,F為頂點(diǎn)的四邊形是菱形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一款手機(jī)支架,忽略支管的粗細(xì),得到它的簡化結(jié)構(gòu)圖如圖(2)所示.已知支架底部支架CD平行于水平面,EFOE,GFEF,支架可繞點(diǎn)O旋轉(zhuǎn),OE20cm,EF20cm.如圖(3)若將支架上部繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)G落在直線CD上時(shí),測量得∠EOG65°.

1)求FG的長度(結(jié)果精確到0.1);

2)將支架由圖(3)轉(zhuǎn)到圖(4)的位置,若此時(shí)F、O兩點(diǎn)所在的直線恰好于CD垂直,點(diǎn)F的運(yùn)動路線的長度稱為點(diǎn)F的路徑長,求點(diǎn)F的路徑長.

(參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14,1.73

查看答案和解析>>

同步練習(xí)冊答案