【題目】將一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角頂點(diǎn)O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.
(1)如圖1,當(dāng)OA在∠COD的外部,且∠AOC=45°時(shí),①試說(shuō)明CO平分∠AOB; ②試說(shuō)明OA∥CD(要求書(shū)寫(xiě)過(guò)程);
(2)如圖2,繞點(diǎn)O旋轉(zhuǎn)直角三角尺AOB,使OA在∠COD的內(nèi)部,且CD∥OB,試探索∠AOC=45°是否成立,并說(shuō)明理由.
【答案】(1)①證明見(jiàn)解析,②證明見(jiàn)解析;(2)成立,理由見(jiàn)解析
【解析】
(1)①當(dāng)∠AOC=45°時(shí),根據(jù)條件可求得∠COB=45°可說(shuō)明CO平分∠AOB;②設(shè)CD、OB交于點(diǎn)E,則可知OE=CE,可證得OB⊥CD,結(jié)合條件可證明OA∥CD;
(2)由平行可得到∠D=∠BOD=45°,則可得到∠AOD=45°,可得到結(jié)論.
解: 解:(1)①∵∠AOB=90°,∠AOC=45°,
∴∠COB=90°﹣45°=45°,
∴∠AOC=∠COB,
即OC平分∠AOB;
②如圖,設(shè)CD、OB交于點(diǎn)E,
∵∠C=45°,
∴∠C=∠COB,
∴∠CEO=90°,
∵∠AOB=90°,
∴∠AOB+∠OEC=180°,
∴AO∥CD;
(2)∠AOC=45°,理由如下:
∵CD∥OB,
∴∠DOB=∠D=45°,
∴∠AOD=90°﹣∠DOB=45°,
∴∠AOC=90°﹣∠AOD=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(4,﹣3),且OA=5,在x軸上確定一點(diǎn)P,使△AOP為等腰三角形.
(1)寫(xiě)出一個(gè)符合題意的點(diǎn)P的坐標(biāo) ;
(2)請(qǐng)?jiān)趫D中畫(huà)出所有符合條件的△AOP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段B′F的長(zhǎng)為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣(x﹣1)2+c與x軸交于A,B(A,B分別在y軸的左右兩側(cè))兩點(diǎn),與y軸的正半軸交于點(diǎn)C,頂點(diǎn)為D,已知A(﹣1,0).
(1)求點(diǎn)B,C的坐標(biāo);
(2)判斷△CDB的形狀并說(shuō)明理由;
(3)將△COB沿x軸向右平移t個(gè)單位長(zhǎng)度(0<t<3)得到△QPE.△QPE與△CDB重疊部分(如圖中陰影部分)面積為S,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離相等,且OB=OC.
(1)如圖1,若點(diǎn)O在BC上,求證:△ABC是等腰三角形.
(2)如圖2,若點(diǎn)O在△ABC內(nèi)部,求證:AB=AC.
(3)若點(diǎn)O點(diǎn)在△ABC的外部,△ABC是等腰三角形還成立嗎?請(qǐng)畫(huà)圖表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a,b,c是常數(shù),a>0)的部分圖象如圖所示,直線x=1是它的對(duì)稱軸.若一元二次方程ax2+bx+c=0的一個(gè)根x1的取值范圍是2<x1<3,則它的另一個(gè)根x2的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)在,家電商場(chǎng)進(jìn)行促銷活動(dòng),有兩種促銷方式,方式一:出售一種優(yōu)惠購(gòu)物卡(注:此卡只作為購(gòu)物優(yōu)惠憑證不能頂替貨款),花300元買(mǎi)這種卡后,憑卡可在這家商場(chǎng)按標(biāo)價(jià)的8折購(gòu)物:方式二:若不買(mǎi)卡,則打9.5折銷售
(1)買(mǎi)一臺(tái)標(biāo)價(jià)為3500的冰箱,方式一應(yīng)付_____元,方式二應(yīng)付_____元.
(2)顧客購(gòu)買(mǎi)多少元金額的商品時(shí),買(mǎi)卡與不買(mǎi)卡花錢(qián)相等?如何購(gòu)物合算?(只需給出結(jié)論,不用寫(xiě)計(jì)算過(guò)程)
(3)小張按合算的方案把這臺(tái)冰箱買(mǎi)下,如果家電商場(chǎng)還能盈利 25%,這臺(tái)冰箱的進(jìn)價(jià)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為配合我市“富美鄉(xiāng)村建設(shè)”宣傳活動(dòng),某社區(qū)對(duì)“推動(dòng)富美鄉(xiāng)村建設(shè)的政策與舉措的了解情況”進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷中把了解情況分為“非常了解(A)”、“有些了解(B)”、“不了解(C)”三類,并將調(diào)查結(jié)果分析整理后,制成如圖所示的兩個(gè)統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上兩幅圖的信息解答下列問(wèn)題:
(1)這次調(diào)查活動(dòng)共調(diào)查了_____人,其中“有些了解(B)”有_____人;
(2)在扇形統(tǒng)計(jì)圖中,“B”所對(duì)應(yīng)的扇形的圓心角度數(shù)是多少?
(3)如果該社區(qū)共有居民5000人,試估計(jì)“不了解(C)”的居民人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于二次函數(shù)y=x2﹣2mx﹣3,下列結(jié)論錯(cuò)誤的是( )
A.它的圖象與x軸有兩個(gè)交點(diǎn)
B.方程x2﹣2mx=3的兩根之積為﹣3
C.它的圖象的對(duì)稱軸在y軸的右側(cè)
D.x<m時(shí),y隨x的增大而減小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com