已知在△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線,四邊形ADBE是平行四邊形.

(1)求證:四邊形ADBE是矩形;

(2)求矩形ADBE的面積.

 

 

【答案】

證明見(jiàn)解析

【解析】

試題分析:(1)根據(jù)等腰三角形三線合一的性質(zhì)可以證得∠ADB=90°,根據(jù)矩形的定義即可證得。

(2)根據(jù)勾股定理求得BD的長(zhǎng),然后利用矩形的面積公式即可求解!

解:(1)證明:∵AB=AC,AD是BC的邊上的中線,∴AD⊥BC。

∴∠ADB=90°。

∵四邊形ADBE是平行四邊形.∴平行四邊形ADBE是矩形。

(2)∵AB=AC=5,BC=6,AD是BC的中線,∴BD=DC=6×=3。

在Rt△ACD中,

∴S矩形ADBE=BD•AD=3×4=12。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,AB=AC=5,BC=8,點(diǎn)G為重心,那么GA=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一個(gè)外角,且∠ACD=(6x-10)°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若點(diǎn)D、E、F分別為AB、BC、AC邊的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn)(且不與點(diǎn)A、B重合),PQ∥AC,且交BC于點(diǎn)Q,以PQ為一邊在點(diǎn)B的異側(cè)作正方形PQMN,設(shè)正方形PQMN與矩形ADEF的公共部分的面積為S,BP的長(zhǎng)為x,試求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知在△ABC中,∠BAC為直角,AB=AC,D為AC上一點(diǎn),CE⊥BD于E.若BD平分∠ABC.
求證:CE=
12
BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點(diǎn)P.
(1)當(dāng)∠A=70°時(shí),求∠BPC的度數(shù);
(2)當(dāng)∠A=112°時(shí),求∠BPC的度數(shù);
(3)當(dāng)∠A=α?xí)r,求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案