【題目】某校九年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的“漢字聽寫”大賽預(yù)賽.各參賽選手的成績(jī)?nèi)鐖D:
九(1)班:88,91,92,93,93,93,94,98,98,100
九(2)班:89,93,93,93,95,96,96,98,98,99
通過(guò)整理,得到數(shù)據(jù)分析表如下:
班級(jí) | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
九(1)班 | 100 | m | 93 | 93 | 12 |
九(2)班 | 99 | 95 | n | 93 | 8.4 |
(1)直接寫出表中m、n的值;
(2)依據(jù)數(shù)據(jù)分析表,有人說(shuō):“最高分在(1)班,(1)班的成績(jī)比(2)班好”,但也有人說(shuō)(2)班的成績(jī)要好,請(qǐng)給出兩條支持九(2)班成績(jī)好的理由;
(3)若從兩班的參賽選手中選四名同學(xué)參加決賽,其中兩個(gè)班的第一名直接進(jìn)入決賽,另外兩個(gè)名額在四個(gè)“98分”的學(xué)生中任選二個(gè),試求另外兩個(gè)決賽名額落在同一個(gè)班的概率.
【答案】(1)94;95.5;(2)略;(3).
【解析】試題(1)求出九(1)班的平均分確定出m的值,求出九(2)班的中位數(shù)確定出n的值即可;
(2)分別從平均分,方差,以及中位數(shù)方面考慮,寫出支持九(2)班成績(jī)好的原因;
(3)畫樹狀圖得出所有等可能的情況數(shù),找出另外兩個(gè)決賽名額落在同一個(gè)班的情況數(shù),即可求出所求的概率.
試題解析:解:(1)m=(88+91+92+93+93+93+94+98+98+100)=94;
把九(2)班成績(jī)排列為:89,93,93,93,95,96,96,98,98,99,
則中位數(shù)n=(95+96)=95.5;
(2)①九(2)班平均分高于九(1)班;②九(2)班的成績(jī)比九(1)班穩(wěn)定;③九(2)班的成績(jī)集中在中上游,故支持九(2)班成績(jī)好(任意選兩個(gè)即可);
(3)用A1,B1表示九(1)班兩名98分的同學(xué),C2,D2表示九(2)班兩名98分的同學(xué),
畫樹狀圖,如圖所示:
所有等可能的情況有12種,其中另外兩個(gè)決賽名額落在同一個(gè)班的情況有4種,
則P(另外兩個(gè)決賽名額落在同一個(gè)班)==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2015年投入教育經(jīng)費(fèi)2900萬(wàn)元,2017年投入教育經(jīng)費(fèi)3509萬(wàn)元.
(1)求2015年至2017年該地區(qū)投入教育經(jīng)費(fèi)的年平均增長(zhǎng)率;
(2)按照義務(wù)教育法規(guī)定,教育經(jīng)費(fèi)的投入不低于國(guó)民生產(chǎn)總值的百分之四,結(jié)合該地區(qū)國(guó)民生產(chǎn)總值的增長(zhǎng)情況,該地區(qū)到2019年需投入教育經(jīng)費(fèi)4250萬(wàn)元,如果按(1)中教育經(jīng)費(fèi)投入的增長(zhǎng)率,到2019年該地區(qū)投入的教育經(jīng)費(fèi)是否能達(dá)到4250萬(wàn)元?請(qǐng)說(shuō)明理由.
(參考數(shù)據(jù): ,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1和
其中正確結(jié)論的個(gè)數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知AB⊥BC于點(diǎn)B,底座BC的長(zhǎng)為1米,底座BC與支架AC所成的角∠ACB=60°,點(diǎn)H在支架AF上,籃板底部支架EH∥BC,EF⊥EH于點(diǎn)E,已知AH長(zhǎng)米,HF長(zhǎng)米,HE長(zhǎng)1米.
(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).
(2)求籃板底部點(diǎn)E到地面的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線交BC于點(diǎn)E(尺規(guī)作圖的痕跡保留在圖中了),連接EF.
(1)求證:四邊形ABEF為菱形;
(2)AE,BF相交于點(diǎn)O,若BF=6,AB=5,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,弦CD⊥AB,垂足為H.
(1) 求證:AHAB=AC2;
(2) 若過(guò)A的直線與弦CD(不含端點(diǎn))相交于點(diǎn)E,與⊙O相交于點(diǎn)F,求證:AEAF=AC2;
(3) 若過(guò)A的直線與直線CD相交于點(diǎn)P,與⊙O相交于點(diǎn)Q,判斷APAQ=AC2是否成立(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市著名景點(diǎn)“鳳凰樓”,一聳入云的文化豐碑,坐落于鳳凰山之巔周末,陽(yáng)光明媚,小明、小芳等同學(xué)一起登鳳凰山,在山頂,他們想用一些測(cè)量工具和所學(xué)知識(shí)測(cè)量“鳳凰樓”的高度來(lái)檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力他們經(jīng)過(guò)觀察發(fā)現(xiàn),觀測(cè)點(diǎn)與“鳳凰樓”底部間的距離不易測(cè)得,因此他們運(yùn)用如下方法來(lái)進(jìn)行測(cè)量:如圖,小芳在小明和“鳳凰樓”之間的直線BM上放一平面鏡,在鏡面上做一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),小明看著鏡面上的標(biāo)記,他來(lái)回走動(dòng),走到點(diǎn)D時(shí),看到“鳳凰樓”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測(cè)得小明眼睛與地面的高度米,米,然后,小明從點(diǎn)D沿DM方向走了24米,到達(dá)“鳳凰樓”影子的末端F處,此時(shí),測(cè)的小明身高FG的影長(zhǎng)米,米如圖,已知,,,其中,測(cè)量時(shí)所使用的平面鏡厚度忽略不計(jì)請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“鳳凰樓”的高AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AB是⊙O的直徑,點(diǎn)C在AB的延長(zhǎng)線上,AB=4,BC=2,P是⊙O上半部分的一個(gè)動(dòng)點(diǎn),連接OP,CP.
(1)求△OPC的最大面積;
(2)求∠OCP的最大度數(shù);
(3)如圖2,延長(zhǎng)PO交⊙O于點(diǎn)D,連接DB,當(dāng)CP=DB時(shí),求證:CP是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根。
(1)求實(shí)數(shù)的取值范圍;
(2)若方程的兩實(shí)根,滿足,求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com