【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(﹣2,2),點(diǎn)B的坐標(biāo)為(6,6),拋物線經(jīng)過(guò)A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)E.

(1)求點(diǎn)E的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)點(diǎn)F為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)N在y軸右側(cè)),連接ON、BN,當(dāng)點(diǎn)F在線段OB上運(yùn)動(dòng)時(shí),求△BON面積的最大值,并求出此時(shí)點(diǎn)N的坐標(biāo);
(4)連接AN,當(dāng)△BON面積最大時(shí),在坐標(biāo)平面內(nèi)求使得△BOP與△OAN相似(點(diǎn)B、O、P分別與點(diǎn)O、A、N對(duì)應(yīng))的點(diǎn)P的坐標(biāo).

【答案】
(1)

解:設(shè)直線AB解析式為y=kx+b,

將A(﹣2,2),B(6,6)代入,得 ,解得

∴y= x+3,令x=0,

∴E(0,3)


(2)

解:設(shè)拋物線解析式為y=ax2+bx+c,

將A(﹣2,2),B(6,6),O(0,0)三點(diǎn)坐標(biāo)代入,得 ,解得 ,

∴y= x2 x


(3)

解:依題意,得直線OB的解析式為y=x,設(shè)過(guò)N點(diǎn)且與直線OB平行的直線解析式為y=x+m,

聯(lián)立 ,得x2﹣6x﹣4m=0,當(dāng)△=36+16m=0時(shí),過(guò)N點(diǎn)與OB平行的直線與拋物線有唯一的公共點(diǎn),則點(diǎn)N到BO的距離最大,所以△BON面積最大,

解得m=﹣ ,x=3,y= ,即N(3, );

此時(shí)△BON面積= ×6×6﹣ +6)×3﹣ × ×3=


(4)

解:過(guò)點(diǎn)A作AS⊥GQ于S,

∵A(﹣2,2),B(6,6),N(3, ),

∵∠AOE=∠OAS=∠BOH=45°,

OG=3,NG= ,NS= ,AS=5,

在Rt△SAN和Rt△NOG中,

∴tan∠SAN=tan∠NOG=

∴∠SAN=∠NOG,

∴∠OAS﹣∠SAN=∠BOG﹣∠NOG,

∴∠OAN=∠NOB,

∴ON的延長(zhǎng)線上存在一點(diǎn)P,使得△BOP∽△OAN,

∵A(﹣2,2),N(3, ),

∵△BOP與△OAN相似(點(diǎn)B、O、P分別與點(diǎn)O、A、N對(duì)應(yīng)),即△BOP∽△OAN,

∴BO:OA=OP:AN=BP:ON

又∵A(﹣2,2),N(3, ),B(6,6),

∴BO=6 ,OA=2 ,AN= ,ON= ,

∴OP= ,BP=

設(shè)P點(diǎn)坐標(biāo)為(4x,x),

∴16x2+x2=( 2,

解得x= ,4x=15,

∵P、P′關(guān)于直線y=x軸對(duì)稱,

∴P點(diǎn)坐標(biāo)為(15, )或( ,15).


【解析】(1)根據(jù)A、B兩點(diǎn)坐標(biāo)求直線AB的解析式,令x=0,可求E點(diǎn)坐標(biāo);(2)設(shè)拋物線解析式為y=ax2+bx+c,將A(﹣2,2),B(6,6),O(0,0)三點(diǎn)坐標(biāo)代入,列方程組求a、b、c的值即可;(3)依題意,得直線OB的解析式為y=x,設(shè)過(guò)N點(diǎn)且與直線OB平行的直線解析式為y=x+m,與拋物線解析式聯(lián)立,得出關(guān)于x的一元二次方程,當(dāng)△=0時(shí),△BON面積最大,由此可求m的值及N點(diǎn)的坐標(biāo);(4)根據(jù)三角形相似的性質(zhì)得到BO:OA=OP:AN=BP:ON,然后根據(jù)勾股定理分別計(jì)算出BO=6 ,OA=2 ,AN= ,ON= ,這樣可求出OP= ,BP= ,設(shè)P點(diǎn)坐標(biāo)為(x,y),再利用勾股定理得到關(guān)于x,y的方程組,解方程組即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】AB兩地相距216千米,甲、乙分別在A、B兩地,若甲騎車(chē)的速度為15千米/時(shí),乙騎車(chē)的速度為12千米/時(shí)。.

1甲、乙同時(shí)出發(fā),背向而行,問(wèn)幾小時(shí)后他們相距351千米?

2甲、乙相向而行,甲出發(fā)三小時(shí)后乙才出發(fā),問(wèn)乙出發(fā)幾小時(shí)后兩人相遇?

3甲、乙相向而行,要使他們相遇于AB的中點(diǎn),乙要比甲先出發(fā)幾小時(shí)?

4甲、乙同時(shí)出發(fā),相向而行,甲到達(dá)B處,乙到達(dá)A處都分別立即返回,幾小時(shí)后相遇?相遇地點(diǎn)距離A有多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是工人師傅用同一種材料制成的金屬框架,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周長(zhǎng)為24cm,CF=3cm,則制成整個(gè)金屬框架所需這種材料的總長(zhǎng)度為 ________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖案由邊長(zhǎng)相等的黑、白兩色正方形按一定規(guī)律拼接而成,第n個(gè)圖案中白色正方形的個(gè)數(shù)比黑色正方形的個(gè)數(shù)多_____.(用含有n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線,過(guò)點(diǎn)A作AG∥DB交CB的延長(zhǎng)線于點(diǎn)G.
(1)求證:DE∥BF;
(2)若∠G=90°,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB=3,AD=4,∠ABC=60°,過(guò)BC的中點(diǎn)E作EF⊥AB,垂足為點(diǎn)F,與DC的延長(zhǎng)線相交于點(diǎn)H,則△DEF的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON=90°,點(diǎn)A,B分別在射線OMON上運(yùn)動(dòng),BE平分∠ABN,BE的反向延長(zhǎng)線與∠BAO的平分線交于點(diǎn)C.

(1)當(dāng)點(diǎn)AB移動(dòng)后,∠BAO=45°時(shí),∠C=________;

(2)當(dāng)點(diǎn)A,B移動(dòng)后,∠BAO=60°時(shí),∠C=________;

(3)(1)(2)猜想∠C是否隨點(diǎn)A,B的移動(dòng)而發(fā)生變化,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿分7分)在一棵樹(shù)的10米高處有兩只猴子,一只猴子爬下樹(shù)走到離樹(shù)20米處的池塘的A處。另一只爬到樹(shù)頂D后直接躍到A處,距離以直線計(jì)算,如果兩只猴子所經(jīng)過(guò)的距離相等,求這棵樹(shù)高。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)敘述并證明三角形內(nèi)角和定理(證明用圖 1);

(2)如圖 2 是七角星形,求∠A+∠B+∠C+∠D+∠E+∠F+∠G 的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案