【題目】如圖,菱形ABCD中,E是AD的中點,EF⊥AC交CB的延長線于點F.
(1)DE和BF相等嗎?請說明理由.
(2)連接AF、BE,四邊形AFBE是平行四邊形嗎?說明理由.
【答案】
【1】(1)相等,連接BD,證明四邊形DEFB是平行四邊形,則BF=DE=AE
【2】(2)是平行四邊形,理由是AE平行且等于BF
【解析】試題分析:(1)、連接BD,AF,BE,根據(jù)菱形的性質(zhì)得出AC⊥BD,結(jié)合EF⊥AC得出EF∥BD,結(jié)合ED∥FB得出四邊形EDBF是平行四邊形,從而得出結(jié)論;(2)、根據(jù)E為AD的中點得出AE=ED,則AE=BF,結(jié)合AE∥BF得出四邊形AEBF為平行四邊形,從而說明結(jié)論.
試題解析:(1)、連接BD,AF,BE, 在菱形ABCD中,AC⊥BD ∵EF⊥AC,
∴EF∥BD,又ED∥FB, ∴四邊形EDBF是平行四邊形,DE=BF,
(2)、∵E為AD的中點, ∴AE=ED,∴AE=BF, 又AE∥BF, ∴四邊形AEBF為平行四邊形,
即AB與EF互相平分.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①經(jīng)過兩點有且只有一條直線;②直線比射線長;③兩點之間的所有連線中直線最短;④連接兩點的線段叫兩點之間的距離;其中正確的有( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,CE、BE的交點為E,現(xiàn)作如下操作:
第一次操作,分別作∠ABE和∠DCE的平分線,交點為E1,
第二次操作,分別作∠ABE1和∠DCE1的平分線,交點為E2,
第三次操作,分別作∠ABE2和∠DCE2的平分線,交點為E3,…,
第n次操作,分別作∠ABEn﹣1和∠DCEn﹣1的平分線,交點為En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,AD是△ABC外角的平分線,已知∠BAC=∠ACD.
(1)求證:△ABC≌△CDA;
(2)若∠B=60°,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓O,∠BAD=90°,AC為直徑,過點A作圓O的切線交CB的延長線于點E,過AC的三等分點F(靠近點C)作CE的平行線交AB于點G,連結(jié)CG.
(1)求證:AB=CD;
(2)求證:CD2=BEBC;
(3)當(dāng)CG=,BE=時,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用小立方體搭一個幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個數(shù),請解答下列問題:
(1)a= ,b= ,c= ;
(2)這個幾何體最少由 個小立方體搭成,最多由 個小立方體搭成;
(3)當(dāng)d=2,e=1,f=2時,畫出這個幾何體的左視圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com