【題目】已知一次函數(shù)的圖象如圖,則下列說法:①;② 是方程的解;③若點,是這個函數(shù)的圖象上的兩點,且,則;④當(dāng),函數(shù)的值,則.其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在x、y軸的正半軸上,點D為對角線OB的中點,點E(4,m)在邊AB上,反比例函數(shù)y= (k≠0)在第一象限內(nèi)的圖象經(jīng)過點D、E,且cos∠BOA= .
(1)求邊AB的長;
(2)求反比例函數(shù)的解析式和m的值;
(3)若反比例函數(shù)的圖象與矩形的邊BC交于點F,點G、H分別是y軸、x軸上的點,當(dāng)△OGH≌△FGH時,求線段OG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,
(1)如圖1,P,Q是BC邊上兩點,AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點P,Q是BC邊上的兩個動點(不與點B,C重合),點P在點Q的左側(cè),且AP=AQ,點Q關(guān)于直線AC的對稱點為M,連接AM,PM.
①依題意將圖2補全;②小明通過觀察、實驗,提出猜想:在點P,Q運動的過程中,始終有PA=PM,小明把這個猜想與同學(xué)們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:要證PA=PM,只需證△APM是等邊三角形.
想法2:在BA上取一點N,使得BN=BP,要證PA=PM,只需證△ANP≌△PCM.……
請你參考上面的想法,幫助小明證明PA=PM(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)1,3,5,12,a,其中整數(shù)a是這組數(shù)據(jù)的中位數(shù),則該組數(shù)據(jù)的平均數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣,某校七年級準(zhǔn)備開設(shè)“神奇魔方”、“魅力數(shù)獨”、“數(shù)學(xué)故事”、“趣題巧解”四門選修課(每位學(xué)生必須且只選其中一門).
(1)學(xué)校對七年級部分學(xué)生進行選課調(diào)查,得到如圖所示的統(tǒng)計圖.根據(jù)該統(tǒng)計圖,請估計該校七年級480名學(xué)生選“數(shù)學(xué)故事”的人數(shù).
(2)學(xué)校將選“數(shù)學(xué)故事”的學(xué)生分成人數(shù)相等的A,B,C三個班,小聰、小慧都選擇了“數(shù)學(xué)故事”,已知小聰不在A班,求他和小慧被分到同一個班的概率.(要求列表或畫樹狀圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】銷售有限公司到某汽車制造有限公司選購A、B兩種型號的轎車,用300萬元可購進A型轎車10輛,B型轎車15輛;用300萬元可購進A型轎車8輛,B型轎車18輛.
(1)求A、B兩種型號的轎車每輛分別多少元?
(2)若該汽車銷售公司銷售一輛A型轎車可獲利8000元,銷售一輛B型轎車可獲利5000元,該汽車銷售公司準(zhǔn)備用不超過400萬元購進A、B兩種型號轎車共30輛,且這兩種轎車全部售出后總獲利不低于20.4萬元,問:有幾種購車方案?在這幾種購車方案中,哪種獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,元旦期間,小明乘汽車從地出發(fā),經(jīng)過地到目的地地(三地在同一條直線上),假設(shè)汽車從到的過程都是勻速直線行駛.圖②表示小明離地的路程(km)與汽車從出發(fā)后行駛時間(h)之何的函數(shù)關(guān)系圖像.
(1)兩地間的路程為 km;
(2)求小明離地的路程與行駛時間之間的函數(shù)表達式;
(3)當(dāng)行駛時間在什么范圍時,汽車離地的路程不超過40 km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組對不等式組,討論得到以下結(jié)論:①若a=5,則不等式組的解集為3<x≤5;②若a=2,則不等式組無解;③若不等式組無解,則a的取值范圍為a<3;④若不等式組只有兩個整數(shù)解,則a的值可以為5.1,其中,正確的結(jié)論的序號是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市自來水公司為限制單位用水,每月只給某單位計劃內(nèi)用水300噸,計劃內(nèi)用水每噸收費3. 4元,超計劃部分每噸按4. 6元收費.
(1)用代數(shù)式表示(所填結(jié)果需化簡):
設(shè)用水量為噸,當(dāng)用水量小于等于300噸,需付款 元;當(dāng)用水量大于300噸,需付款 元.
(2)若某單位4月份繳納水費1480元,則該單位用水多少噸?
(3)若某單位5、6月份共用水750噸(6月份用水量超過5月份),共交水費2790元,則該單位5、6月份各用水多少噸?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com