精英家教網(wǎng)如圖,在平面直角坐標(biāo)系內(nèi),放置一個(gè)直角梯形AOCD,已知AD=3,AO=8,CO=5,若點(diǎn)P在梯形內(nèi),且S△PAD=S△POC,S△PAO=S△PCD,那么點(diǎn)P的坐標(biāo)是
 
分析:本題可先設(shè)出P點(diǎn)的坐標(biāo),在根據(jù)直角坐標(biāo)中的面積公式列出方程,化簡(jiǎn)即可得出P點(diǎn)的坐標(biāo).
解答:精英家教網(wǎng)解:設(shè)P點(diǎn)的縱坐標(biāo)是y,因而根據(jù)S△PAD=S△POC,得到
1
2
×3×(8-y)=
1
2
×5y,解得y=3,因而P點(diǎn)的縱坐標(biāo)是3;
設(shè)P的橫坐標(biāo)是x,則△PAO的面積是
1
2
×8x=4x,過P作MN⊥OC,交AD,OC分別于M,N.
△PCD的面積是
3+5-2x
2
×8-
1
2
×(3-x)(8-3)-
1
2
×(5-x)×3,
根據(jù)S△PAO=S△PCD,得到x=
17
8
,因而點(diǎn)P的坐標(biāo)是(
17
8
,3).
點(diǎn)評(píng):根據(jù)三角形的面積的問題轉(zhuǎn)化為求P點(diǎn)的坐標(biāo),是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案