【題目】如圖,AB是半圓O的直徑,D是半圓O上一點(diǎn),C是的中點(diǎn),連結(jié)AC交BD于點(diǎn)E,連結(jié)AD,若BE=4DE,CE=6,則AB的長為_____.
【答案】4
【解析】
如圖,連接OC交BD于K.設(shè)DE=k.BE=4k,則DK=BK=2.5k,EK=1.5k,由AD∥CK,推出AE:EC=DE:EK,可得AE=4,由△ECK∽△EBC,推出EC2=EKEB,求出k即可解決問題.
解:如圖,連接OC交BD于K.
∵,
∴OC⊥BD,
∵BE=4DE,
∴可以假設(shè)DE=k.BE=4k,則DK=BK=2.5k,EK=1.5k,
∵AB是直徑,
∴∠ADK=∠DKC=∠ACB=90°,
∴AD∥CK,
∴AE:EC=DE:EK,
∴AE:6=k:1.5k,
∴AE=4,
∵△ECK∽△EBC,
∴EC2=EKEB,
∴36=1.5k×4k,
∵k>0,
∴k=,
∴BC===2,
∴AB===4.
故答案為:4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】河南開封的西瓜個大瓤紅且甜,全國知名某瓜農(nóng)準(zhǔn)備從某貨運(yùn)公司租用大小兩種型號的貨車運(yùn)輸西瓜到外地銷售,已知一輛大型貨車和一輛小型貨車每次共運(yùn)10噸;兩輛大型貨車和三輛小型渣貨車每次共運(yùn)24噸.
求一輛大型貨車和一輛小型貨車每次各運(yùn)西瓜多少噸?
已知一輛大型貨車運(yùn)輸花費(fèi)為400元次,一輛小型貨車運(yùn)輸花費(fèi)為300元次,計(jì)劃用20輛貨車運(yùn)輸,且每次運(yùn)輸西瓜總重量不少于96噸,如何安排才能使每次運(yùn)費(fèi)最低,最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉嘉和淇淇做一個游戲,他們拿出張撲克牌,將數(shù)字為的四張牌給嘉嘉,將數(shù)字為的四張牌給淇淇,再從各自的四張牌中隨機(jī)抽出一張.
(1)用列表法或樹狀圖表示出所得數(shù)字的所有情況;
(2)如果比大小,誰抽出的數(shù)字大誰獲勝,嘉嘉獲勝的概率是多少?
(3)如果求和,抽出的兩個數(shù)字和為奇數(shù),嘉嘉獲勝;和為偶數(shù),淇淇獲勝,誰獲勝的概率大,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應(yīng)值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | -3 | 1 | 3 | 1 | … |
則下列判斷中正確的是( )
A.拋物線開口向上B.拋物線與軸的交點(diǎn)在軸負(fù)半軸上
C.當(dāng)時,D.方程的正根在3與4之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武漢市霧霾天氣嚴(yán)重,環(huán)境治理已刻不容緩,武漢市某電器商場根據(jù)民眾健康需要,代理銷售某種家用空氣凈化器,其進(jìn)價是200元/臺,經(jīng)過市場銷售后發(fā)現(xiàn):在一個月內(nèi),當(dāng)售價是400元/臺時,可售出200臺,且售價每降低10元,就可多售出50臺,若供應(yīng)商規(guī)定這種空氣凈化器售價不低于330元/臺,代理銷售商每月要完成不低于450臺的銷售任務(wù).
(1)試確定月銷售量(臺)與售價(元/臺)之間的函數(shù)關(guān)系式.
(2)當(dāng)售價(元/臺)定為多少時,商場每月銷售這種空氣凈化器所獲得的利潤(元)最大?最大利潤是多少?
(3)當(dāng)售價(元/臺)滿足什么條件時,商場每月銷售這種空氣凈化器所獲得的利潤(元)不低于70000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某興趣小組用無人機(jī)進(jìn)行航拍測高,無人機(jī)從1號樓和2號樓的地面正中間B點(diǎn)垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____米(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示、則下列結(jié)論:①abc>0;②a﹣5b+9c>0;③3a+c<0,正確的是( )
A.①③B.①②C.①②③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限內(nèi)交于A,B兩點(diǎn),點(diǎn)A的縱坐標(biāo)為4,點(diǎn)B的坐標(biāo)為(3,2),連接0A,OB.
(1)求反比例函數(shù)的解析式;
(2)點(diǎn)M是線段AB上的一動點(diǎn)(不與點(diǎn)A,B重合),過點(diǎn)M作MEx軸于點(diǎn)E,作MNy軸為于點(diǎn)N,求四邊形MEON 的最大面積;
(3)將直線y=kx+b向下平移n個單位長度,若直線與反比例函數(shù)在第一象限內(nèi)的圖象只有一個交點(diǎn),求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍是x≠0的全體實(shí)數(shù),如表是y與x的幾組對應(yīng)值.
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | ﹣ | 1 | 2 | 3 | … | ||
y | … | ﹣ | ﹣ | ﹣ | m | … |
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過程,請補(bǔ)充完整:
(1)從表格中讀出,當(dāng)自變量是﹣2時,函數(shù)值是 ;
(2)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(3)在畫出的函數(shù)圖象上標(biāo)出x=2時所對應(yīng)的點(diǎn),并寫出m= .
(4)結(jié)合函數(shù)的圖象,寫出該函數(shù)的一條性質(zhì): .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com