【題目】(1)如圖1,線段AC=6cm,線段BC=15cm,點M是AC的中點,在CB上取一點N,使得CN:NB=1:2,求MN的長.
(2)如圖2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.
【答案】(1)MN的長為8cm;(2)∠AOB=120°.
【解析】
試題(1)直接利用兩點之間距離分別得出CN,MC的長進而得出答案;
(2)直接利用角平分線的性質以及結合已知角的關系求出答案.
試題解析:解:(1)∵M是AC的中點,AC=6cm,∴MC=AC=6×=3cm.
又因為CN:NB=1:2,BC=15cm,∴CN=15×=5cm,∴MN=MC+CN=3+5=8cm,∴MN的長為8cm;
(2)∵∠BOE=2∠AOE,∠AOB=∠BOE+∠AOE,∴∠BOE=∠AOB.
∵OF平分∠AOB,∴∠BOF=∠AOB,∴∠EOF=∠BOE﹣∠BOF=∠AOF.
∵∠EOF=20°,∴∠AOB=120°.
科目:初中數(shù)學 來源: 題型:
【題目】小華和小容都想?yún)⒓訉W校組織的數(shù)學興趣小組,根據(jù)學校分配的名額,他們兩人只能有1人參加.數(shù)學老師想出了一個主意:如圖,給他們六張卡片,每張卡片上都有一些數(shù),將化簡后的數(shù)在數(shù)軸上表示出來,再用“<”連接起來,誰先按照要求做對,誰就參加興趣小組,你也一起來試一試吧!
-(-2) (-1)3 -|-3| 0的相反數(shù)
① 、凇 、邸 、
-0.4的倒數(shù) 比-1大2.5的數(shù)
⑤ 、
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1.將菱形OABC沿x軸的正方向無滑動翻轉,每次翻轉60°,連續(xù)翻轉2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標為( )
A. (1345,0) B. (1346,0) C. (1345.5, ) D. (1346.5, )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,于是小明用來表示的小數(shù)部分,你同意小明的表示方法嗎?事實上,小明的表示方法是有道理的,因為的整數(shù)部分是1,將這個數(shù)減去其整數(shù)部分,差就是小數(shù)部分.又例如:∵22<7<3,即2<<3,∴的整數(shù)部分為2,小數(shù)部分為﹣2.
請解答:
(1) 的整數(shù)部分是 ,小數(shù)部分是 .
(2)如果的小數(shù)部分為a, 的整數(shù)部分為b,求a+b-的值;
(3)已知:x是3+的整數(shù)部分,y是其小數(shù)部分,請直接寫出x﹣y的值的相反數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖長方形MNPQ是菜市民健身廣場的平面示意圖,它是由6個正方形拼成的長方形,中間最小的正方形A的邊長是1,觀察圖形特點可知長方形相對的兩邊是相等的(如圖中MN=PQ).正方形四邊相等.請根據(jù)這個等量關系,試計算長方形MNPQ的面積,結果為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直徑坐標系中,反比例函數(shù)y= (x>0)的圖象上有一點A(m,4),過點A作AB⊥x軸于點B,將點B向右平移2個單位長度得到點C,過點C作y軸的平行線交反比例函數(shù)的圖象于點D,CD=
(1)點D的橫坐標為(用含m的式子表示);
(2)求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F.
(1)求證:四邊形ABEF是菱形;
(2)若AB=10,BF=16,AD=15, 則□ABCD 的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列結論:①AC﹣BE=AE;②點E在線段BC的垂直平分線上;③∠DAE=∠C;④BC=4AD,其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面中,O為原點,點A的坐標為(20,0),點B在第一象限內(nèi),BO=10,sin∠BOA= .
(1)在圖中,求作△ABO的外接圓;(尺規(guī)作圖,不寫作法但需保留作圖痕跡)
(2)求點B的坐標與cos∠BAO的值;
(3)若A,O位置不變,將點B沿 軸正半軸方向平移使得△ABO為等腰三角形,請直接寫出平移距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com