【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,的面積是.
求點的坐標(biāo);
求過點、、的拋物線的解析式;
在中拋物線的對稱軸上是否存在點,使的周長最。咳舸嬖,求出點的坐標(biāo);若不存在,請說明理由;
在中軸下方的拋物線上是否存在一點,過點作軸的垂線,交直線于點,線段把分成兩個三角形,使其中一個三角形面積與四邊形面積比為?若存在,求出點的坐標(biāo);若不存在,請說明理由.
【答案】(1)(2);(3)存在,.(4)點坐標(biāo)是.
【解析】
(1)由三角形S=OB=可得點B的坐標(biāo);
(2)設(shè)拋物線的解析式為y=ax(x+2),點A在其上,求得a;
(3)存在點C、過點A作AF垂直于x軸于點F,拋物線的對稱軸x=-1交x軸于點E、當(dāng)點C位于對稱軸與線段AB的交點時,△AOC的周長最小,由三角形相似,得到C點坐標(biāo).
(4)設(shè)p(x,y),直線AB為y=kx+b,解得k、b,由S四BPOD=S△BPO+S△BOD,S△AOD=S△AOB-S△BOD,兩面積正比可知,求出x.
解:由題意得,
∴.
設(shè)拋物線的解析式為,代入點,得,
∴,
存在點、過點作垂直于軸于點,拋物線
的對稱軸交軸于點、當(dāng)點位于對稱軸
與線段的交點時,的周長最小,
∵,
∴,
∴,
∴.存在.如圖,設(shè),直線為,
則,
解得,
∴直線為,
,
,
,
∵,
∴,
∴,(舍去),
∴,
又∵,
∴,
∴,.
,不符合題意.
∴存在,點坐標(biāo)是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,P是AB上的動點(P異于A、B),過點P的直線截△ABC,使截得的三角形與△ABC相似,我們不妨稱這種直線為過點P的△ABC的相似線,簡記為P(),(為自然數(shù))
(1)如圖①,∠A=90°,∠B=∠C,當(dāng)BP=2PA時,P()、P()都是過點P的△ABC的相似線(其中⊥BC,∥AC),此外還有_______條.
(2)如圖②,∠C=90°,∠B=30°,當(dāng)_____時,P()截得的三角形面積為△ABC面積的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的對角線交于點點,分別在,上()且,,的延長線交于點,,的延長線交于點,連接.
(1)求證:.
(2)若正方形的邊長為4,為的中點,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別過反比例函數(shù)y=的圖象上的點P1(1,y1),P2(2,y2),…Pn(n,yn)…作x軸的垂線,垂足分別為A1,A2,…,An…,連接A1P2,A2P3,…,An-1Pn,…,再以A1P1,A1P2為一組鄰邊畫一個平行四邊形A1P1B1P2,以A 2P2,A2P3為一組鄰邊畫一個平行四邊形A2P2B2P3,點B2的縱坐標(biāo)是____.依此類推,則點Bn的縱坐標(biāo)是_______.(結(jié)果用含n代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從,兩地同時出發(fā),沿同一條公路相向行駛,相遇后,甲車?yán)^續(xù)以原速行駛到地,乙車立即以原速原路返回到地.甲、乙兩車距B地的路程()與各自行駛的時間()之間的關(guān)系如圖所示.
(1)求甲車距地的路程關(guān)于的函數(shù)解析式;
(2)求乙車距地的路程關(guān)于的函數(shù)解析式,并寫出自變量的取值范圍;
(3)當(dāng)甲車到達(dá)地時,乙車距地的路程為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x與拋物線y=x2﹣x﹣3交于A、B兩點,點P是拋物線上的一個動點,過點P作直線PQ⊥x軸,交直線y=x于點Q,設(shè)點P的橫坐標(biāo)為m,則線段PQ的長度隨m的增大而減小時m的取值范圍是( 。
A. m<﹣1或m> B. m<﹣1或<m<3 C. m<﹣1或m>3 D. m<﹣1或1<m<3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B的坐標(biāo)是(4,4),作BA⊥x軸于點A,作BC⊥y軸于點C,反比例函數(shù)(k>0)的圖象經(jīng)過BC的中點E,與AB交于點F,分別連接OE、CF,OE與CF交于點M,連接AM.
(1)求反比例函數(shù)的函數(shù)解析式及點F的坐標(biāo);
(2)你認(rèn)為線段OE與CF有何位置關(guān)系?請說明你的理由.
(3)求證:AM=AO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,點D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A′處,當(dāng)A′E⊥AC時,A′B=_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com