【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象的頂點(diǎn)為A,與y軸交于點(diǎn)B,異于頂點(diǎn)A的點(diǎn)C(1,n)在該函數(shù)圖象上.
(1)當(dāng)m=5時,求n的值.
(2)當(dāng)n=2時,若點(diǎn)A在第一象限內(nèi),結(jié)合圖象,求當(dāng)y時,自變量x的取值范圍.
(3)作直線AC與y軸相交于點(diǎn)D.當(dāng)點(diǎn)B在x軸上方,且在線段OD上時,求m的取值范圍.
【答案】(1)-4(2)1≤x≤5(3)0≤m<1或1<m<2
【解析】
1)利用待定系數(shù)法求解即可.
(2)求出時,的值即可判斷.
(3)由題意點(diǎn)的坐標(biāo)為,求出幾個特殊位置的值即可判斷.
解:(1)當(dāng)時,,
當(dāng)時,.
(2)當(dāng)時,將代入函數(shù)表達(dá)式,得,
解得或(舍棄),
此時拋物線的對稱軸,
根據(jù)拋物線的對稱性可知,當(dāng)時,或5,
的取值范圍為.
(3)點(diǎn)與點(diǎn)不重合,
,
拋物線的頂點(diǎn)的坐標(biāo)是,
拋物線的頂點(diǎn)在直線上,
當(dāng)時,,
點(diǎn)的坐標(biāo)為,
拋物線從圖1的位置向左平移到圖2的位置,逐漸減小,點(diǎn)沿軸向上移動,
當(dāng)點(diǎn)與重合時,,
解得或,
當(dāng)點(diǎn)與點(diǎn)重合時,如圖2,頂點(diǎn)也與,重合,點(diǎn)到達(dá)最高點(diǎn),
點(diǎn),
,解得,
當(dāng)拋物線從圖2的位置繼續(xù)向左平移時,如圖3點(diǎn)不在線段上,
點(diǎn)在線段上時,的取值范圍是:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將直角三角形紙片(,)沿過點(diǎn)A的直線折疊,使得AC落在AB邊上折痕為AD,展開紙片(如圖1);再次折疊該三角形紙片,使點(diǎn)A和點(diǎn)D重合,折痕為EF,展平紙片后得到(如圖2),若,,則折痕EF的長為( )
A.B.C.D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,給出了格點(diǎn)四邊形ABCD(頂點(diǎn)為網(wǎng)格線的交點(diǎn)).
(1)畫出四邊形ABCD關(guān)于x軸成軸對稱的四邊形A1B1C1D1;
(2)以O為位似中心,在第三象限畫出四邊形ABCD的位似四邊形A2B2C2D2,且位似比為1;
(3)在第一象限內(nèi)找出格點(diǎn)P,使∠DCP=∠CDP,并寫出點(diǎn)P的坐標(biāo)(寫出一個即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)C:y=(x﹣2)2﹣2(0≤x≤3),點(diǎn)P在二次函數(shù)C的圖象上,點(diǎn)A為x軸正半軸上一點(diǎn),若tan∠AOP=1,則點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線C:y=x[a(x﹣1)+x+1](a為任意實(shí)數(shù)).
(1)無論a取何值,拋物線C恒過定點(diǎn) , .
(2)當(dāng)a=1時,設(shè)拋物線C在第一象限依次經(jīng)過的整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))為A1,A2,……An,將拋物線C沿著直線y=x(x≥0)平移,將平移后的拋物線記為C n,拋物線C n經(jīng)過點(diǎn)An,C n的頂點(diǎn)坐標(biāo)為Mn(n為正整數(shù)且n=1,2,…,n,例如n=1時,拋物線C1經(jīng)過點(diǎn)A1,C1的頂點(diǎn)坐標(biāo)為M1).
①拋物線C2的解析式為 ,頂點(diǎn)坐標(biāo)為 .
②拋物線C1上是否存在點(diǎn)P,使得PM1∥A2M2?若存在,求出點(diǎn)P的坐標(biāo),并判斷四邊形PM1M2A2的形狀;若不存在,請說明理由.
③直接寫出Mn﹣1,Mn兩頂點(diǎn)間的距離: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=,∠B=45°,∠C=60°.
(1)求BC邊上的高線長.
(2)點(diǎn)E為線段AB的中點(diǎn),點(diǎn)F在邊AC上,連結(jié)EF,沿EF將△AEF折疊得到△PEF.
①如圖2,當(dāng)點(diǎn)P落在BC上時,求∠AEP的度數(shù).
②如圖3,連結(jié)AP,當(dāng)PF⊥AC時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象的頂點(diǎn)為A,與y軸交于點(diǎn)B,異于頂點(diǎn)A的點(diǎn)C(1,n)在該函數(shù)圖象上.
(1)當(dāng)m=5時,求n的值.
(2)當(dāng)n=2時,若點(diǎn)A在第一象限內(nèi),結(jié)合圖象,求當(dāng)y時,自變量x的取值范圍.
(3)作直線AC與y軸相交于點(diǎn)D.當(dāng)點(diǎn)B在x軸上方,且在線段OD上時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,如圖1,AB是⊙O的弦,點(diǎn)F是的中點(diǎn),過點(diǎn)F作EF⊥AB于點(diǎn)E,易得點(diǎn)E是AB的中點(diǎn),即AE=EB.⊙O上一點(diǎn)C(AC>BC),則折線ACB稱為⊙O的一條“折弦”.
(1)當(dāng)點(diǎn)C在弦AB的上方時(如圖2),過點(diǎn)F作EF⊥AC于點(diǎn)E,求證:點(diǎn)E是“折弦ACB”的中點(diǎn),即AE=EC+CB.
(2)當(dāng)點(diǎn)C在弦AB的下方時(如圖3),其他條件不變,則上述結(jié)論是否仍然成立?若成立說明理由;若不成立,那么AE、EC、CB滿足怎樣的數(shù)量關(guān)系?直接寫出,不必證明.
(3)如圖4,已知Rt△ABC中,∠C=90°,∠BAC=30°,Rt△ABC的外接圓⊙O的半徑為2,過⊙O上一點(diǎn)P作PH⊥AC于點(diǎn)H,交AB于點(diǎn)M,當(dāng)∠PAB=45°時,求AH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com