【題目】已知二次函數(shù)y1=x2+2x+m﹣5.
(1)如果該二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如果該二次函數(shù)的圖象與x軸交于A、B兩點,與y軸交于點C,且點B的坐標(biāo)為(1,0),求它的表達式和點C的坐標(biāo);
(3)如果一次函數(shù)y2=px+q的圖象經(jīng)過點A、C,請根據(jù)圖象直接寫出y2<y1時,x的取值范圍.

【答案】
(1)解:∵二次函數(shù)y1=x2+2x+m﹣5的圖象與x軸有兩個交點,

∴△>0,

∴22﹣4(m﹣5)>0,

解得:m<6


(2)解:∵二次函數(shù)y1=x2+2x+m﹣5的圖象經(jīng)過點(1,0),

∴1+2+m﹣5=0,

解得:m=2,

∴它的表達式是y1=x2+2x﹣3,

∵當(dāng)x=0時,y=﹣3,

∴C(0,﹣3)


(3)解:由圖象可知:當(dāng)y2<y1時,x的取值范圍是x<﹣3或x>0.


【解析】(1)根據(jù)該二次函數(shù)的圖象與x軸有兩個交點可知判別式>0,進而可求出m的范圍;
(2)根據(jù)該二次函數(shù)的圖象過點B(1,0),從而求出m的值,可得它的表達式,再由x=0,求得y的值,則可得C的坐標(biāo);
(3)根據(jù)題意畫出圖象,再由圖象可直接求得.
【考點精析】掌握拋物線與坐標(biāo)軸的交點是解答本題的根本,需要知道一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)解方程:

(2)計算:3a(2a2-9a+3)-4a(2a-1)

(3)計算:()×()+|-1|+(5-2π)0

(4)先化簡,再求值:(xy2+x2y),其中x=,y=.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點,點P到⊙O的距離SP的定義如下:若點P與圓心O重合,則SP為⊙O的半徑長;若點P與圓心O不重合,作射線OP交⊙O于點A,則SP為線段AP的長度.
圖1為點P在⊙O外的情形示意圖.

(1)若點B(1,0),C(1,1),D(0, ),則SB=;SC=;SD=;
(2)若直線y=x+b上存在點M,使得SM=2,求b的取值范圍;
(3)已知點P,Q在x軸上,R為線段PQ上任意一點.若線段PQ上存在一點T,滿足T在⊙O內(nèi)且ST≥SR , 直接寫出滿足條件的線段PQ長度的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y= 的圖象交于點A(﹣1,n).

(1)求反比例函數(shù)y= 的解析式;
(2)若P是坐標(biāo)軸上一點,且滿足PA=OA,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.

(1)求每套隊服和每個足球的價格是多少?

(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;

(3)假如你是本次購買任務(wù)的負責(zé)人,你認為到哪家商場購買比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于點P(x,y)和Q(x,y′),給出如下定義:
如果y′= ,那么稱點Q為點P的“關(guān)聯(lián)點”.
例如:點(5,6)的“關(guān)聯(lián)點”為點(5,6),點(﹣5,6)的“關(guān)聯(lián)點”
為點(﹣5,﹣6).
(1)①點(2,1)的“關(guān)聯(lián)點”為;②如果點A(3,﹣1),B(﹣1,3)的“關(guān)聯(lián)點”中有一個在函數(shù) 的圖象上,那么這個點是(填“點A”或“點B”).
(2)①如果點M*(﹣1,﹣2)是一次函數(shù)y=x+3圖象上點M的“關(guān)聯(lián)點”,
那么點M的坐標(biāo)為;②如果點N*(m+1,2)是一次函數(shù)y=x+3圖象上點N的“關(guān)聯(lián)點”,求點N的坐標(biāo)
(3)如果點P在函數(shù)y=﹣x2+4(﹣2<x≤a)的圖象上,其“關(guān)聯(lián)點”Q的縱坐標(biāo)
y′的取值范圍是﹣4<y′≤4,那么實數(shù)a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,△ABC中,AE交BC于點D,∠C=∠E,AD:DE=3: 5,AE=8,BD=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀:已知a+b=﹣4,ab=3,求a2+b2的值.

解:∵a+b=﹣4,ab=3,

a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.

請你根據(jù)上述解題思路解答下面問題:

(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.

(2)已知a﹣c﹣b=﹣10,(a﹣b)c=﹣12,求(a﹣b)2+c2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在 數(shù)軸上對應(yīng)的數(shù)分別用表示,且.是數(shù)軸的一動點.

⑴在數(shù)軸上標(biāo)出的位置,并求出之間的距離;

⑵數(shù)軸上一點點24個單位的長度,其對應(yīng)的數(shù)滿足,當(dāng)點滿足時,求點對應(yīng)的數(shù).

⑶動點從原點開始第一次向左移動1個單位,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,……點能移動到與重合的位置嗎?若能,請?zhí)骄康趲状我苿訒r重合;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案