【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的、兩點(diǎn),與軸交于點(diǎn),點(diǎn)軸負(fù)半軸上,,且四邊形是平行四邊形,點(diǎn)的縱坐標(biāo)為.

(1)求該反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)連接,求的面積;

(3)直接寫出關(guān)于的不等式的解集.

【答案】(1),;(2)=3;(3)

【解析】

1)根據(jù)題意得出B點(diǎn)坐標(biāo),進(jìn)而得出反比例函數(shù)和一次函數(shù)的解析式;

2)利用,進(jìn)而得出答案;

3)結(jié)合函數(shù)圖象得出答案.

1)∵直線軸交于點(diǎn)

∴點(diǎn)的坐標(biāo)為 ,

∵四邊形是平行四邊形,

,

,

∴點(diǎn)的坐標(biāo)為 ,

,

2)過點(diǎn)軸于,過點(diǎn)軸于

∵點(diǎn)的縱坐標(biāo)為,

,

∴點(diǎn)的坐標(biāo)為,∴

∵點(diǎn)的坐標(biāo)為,∴,

3)mx-2mx-2<由圖象可知x<-20<x<1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD 中,點(diǎn)P在對(duì)角線AC上,過PEFAB,HGAD,記四邊形BFPH的面積為S1,四邊形DEPG的面積為S2,則S1S2的大小關(guān)系是

A. S1>S2 B. S1=S2 C. S1<S2 D. 無法判斷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線AB∥CD,直線l與直線AB、CD相交于點(diǎn),E、F,將l繞點(diǎn)E逆時(shí)針旋轉(zhuǎn)40°后,與直線AB相交于點(diǎn)G,若∠GEC=70°,那么∠GFE=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,對(duì)角線相交于點(diǎn).要使四邊形是正方形,還需添加一組條件.下面給出了五組條件:①,且;, ,且;,且,且.其中正確的是________(填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)2

(2)=﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為給人們的生活帶來方便,2017年興化市準(zhǔn)備在部分城區(qū)實(shí)施公共自行車免費(fèi)服務(wù).圖1是公共自行車的實(shí)物圖,圖2是公共自行車的車架示意圖,點(diǎn)A、D、C、E在同一條直線上,CD=35cm,DF=24cm,AF=30cm,F(xiàn)D⊥AE于點(diǎn)D,座桿CE=15cm,且∠EAB=75°. (參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)

(1)求AD的長(zhǎng);
(2)求點(diǎn)E到AB的距離(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)室里,水平桌面上有甲、乙、丙三個(gè)相 同高度的圓柱形容器容器足夠高,底面半徑之比為1:2:1,用兩個(gè)相同的管子在10cm高度處連通即管子底部離容器底10cm,現(xiàn)三個(gè)容器中,只有乙中有水,水位高4cm,如圖所示若每分鐘同時(shí)向甲和丙注入相同量的水,開始注水1分鐘,甲的水位上升3cm則開始注入 分鐘水量后,甲的水位比乙高1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),對(duì)角線AC上有一點(diǎn)P使PE+PD的和最小,這個(gè)最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習(xí)冊(cè)答案