【題目】用配方法解下列方程時,配方有錯誤的是( )
A.化為B.化為
C.化為D.化為
【答案】C
【解析】
根據(jù)配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方分別進行配方,即可求出答案.
A、由原方程,得,
等式的兩邊同時加上一次項系數(shù)2的一半的平方1,得;
故本選項正確;
B、由原方程,得,
等式的兩邊同時加上一次項系數(shù)7的一半的平方,得,,
故本選項正確;
C、由原方程,得,
等式的兩邊同時加上一次項系數(shù)8的一半的平方16,得(x+4)2=7;
故本選項錯誤;
D、由原方程,得3x24x=2,
化二次項系數(shù)為1,得x2x=
等式的兩邊同時加上一次項系數(shù)的一半的平方,得;
故本選項正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】“疾馳臭豆腐”是長沙知名地方小吃,某分店經(jīng)理發(fā)現(xiàn),當每份臭豆腐的售價為元時,每天能賣出份;當每份臭豆腐的售價每增加元時,每天就會少賣出份,設(shè)每份臭豆腐的售價增加元時,一天的營業(yè)額為元.
(1)求與的函數(shù)關(guān)系式(不要求寫出的取值范圍);
(2)考慮到顧客可接受價格元份的范圍是,且為整數(shù),不考慮其他因素,則該分店的臭豆腐每份多少元時,每天的臭豆腐營業(yè)額最大?最大營業(yè)額是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB為⊙O的直徑,C、D為心⊙O上的點,C是優(yōu)弧AD的中點,CE⊥DB交DB的延長線于點E.
(1)如圖1,判斷直線CE與⊙O的位置關(guān)系,并說明理由.
(2)如圖2,若tan∠BCE=,連BC、CD,求cos∠BCD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,點為線段外一動點,且,,填空:當點位于__________時,線段的長取到最大值__________,且最大值為;(用含、的式子表示).
(2)如圖2,若點為線段外一動點,且,,分別以,為邊,作等邊和等邊,連接,.
①圖中與線段相等的線段是線段__________,并說明理由;
②直接寫出線段長的最大值為__________.
(3)如圖3,在平面直角坐標系中,點的坐標為,點的坐標為,點為線段外一動點,且,,,請直接寫出線段長的最大值為__________,及此時點的坐標為__________.(提示:等腰直角三角形的三邊長、、滿足)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:
(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,網(wǎng)格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連線為邊的三角形稱為“格點三角形”,圖中的是格點三角形.在建立平面直角坐標系后,點的坐標為.
(1)把向下平移5格后得到,寫出點,,的坐標,并畫出;
(2)把繞點按順時針方向旋轉(zhuǎn)后得到,寫出點,,的坐標,并畫出;
(3)把以點為位似中心放大得到,使放大前后對應線段的比為,寫出點,,的坐標,并畫出.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有長為的籬笆,現(xiàn)一面利用墻(墻的最大可用長度為)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬為,面積為.
(1)求與的函數(shù)關(guān)系式及自變量的取值范圍;
(2)要圍成面積為的花圃,的長是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L:y=x+1交y軸于點A1,在x軸正方向上取點B1,使OB1=OA1;過點B1作A2B1⊥x軸,交L于點A2,在x軸正方向上取點B2,使B1B2=B1A2;過點B2作A3B2⊥x軸,交L于點A3,在x軸正方向上取點B3,使B2B3=B2A3;…記△OA1B1面積為S1,△B1A2B2面積為S2,△B2A3B3面積為S3,…則S2019等于_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,頂點為M的拋物線y=ax2+bx+3與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C
(1)求拋物線的表達式;
(2)在直線AC的上方的拋物線上,有一點P(不與點M重合),使△ACP的面積等于△ACM的面積,請求出點P的坐標;
(3)在y軸上是否存在一點Q,使得△QAM為直角三角形?若存在,請直接寫出點Q的坐標:若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com