【題目】如圖,已知五邊形ABCDE中,∠ABC=∠AED=90°,AB=CD=AE=BC+DE=2,則五邊形ABCDE的面積為_____________.
【答案】4
【解析】
可延長(zhǎng)DE至F,使EF=BC,利用SAS可證明△ABC≌△AEF,連AC,AD,AF,再利用SSS證明△ACD≌△AFD,可將五邊形ABCDE的面積轉(zhuǎn)化為兩個(gè)△ADF的面積,進(jìn)而求解即可.
延長(zhǎng)DE至F,使EF=BC,連AC,AD,AF,
在△ABC與△AEF中,
,
∴△ABC≌△AEF(SAS),
∴AC=AF,
∵AB=CD=AE=BC+DE,∠ABC=∠AED=90°,
∴CD=EF+DE=DF,
在△ACD與△AFD中,
,
∴△ACD≌△AFD(SSS),
∴五邊形ABCDE的面積是:S=2S△ADF=2×DFAE=2××2×2=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形ABCD中,AB=8,AD=6;點(diǎn)E是對(duì)角線BD上一動(dòng)點(diǎn),連接CE,作EF⊥CE交AB邊于點(diǎn)F,以CE和EF為鄰邊作矩形CEFG,作其對(duì)角線相交于點(diǎn)H.
(1)①如圖2,當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),CE= ,CG= ;
②如圖3,當(dāng)點(diǎn)E是BD中點(diǎn)時(shí),CE= ,CG= ;
(2)在圖1,連接BG,當(dāng)矩形CEFG隨著點(diǎn)E的運(yùn)動(dòng)而變化時(shí),猜想△EBG的形狀?并加以證明;
(3)在圖1,的值是否會(huì)發(fā)生改變?若不變,求出它的值;若改變,說(shuō)明理由;
(4)在圖1,設(shè)DE的長(zhǎng)為x,矩形CEFG的面積為S,試求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,先描出點(diǎn),點(diǎn).
(1)描出點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)的位置,寫出的坐標(biāo) ;
(2)用尺規(guī)在軸上找一點(diǎn),使的值最。ūA糇鲌D痕跡);
(3)用尺規(guī)在軸上找一點(diǎn),使(保留作圖痕跡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D為BC邊上一點(diǎn),∠1=∠2=∠3,AC=AE.
求證:△ABC≌△ADE;(填空)
證明:∵∠2+∠E+∠AFE=180° ( )
∠3+∠C+∠CFD=180°(同理)
又∵∠2=∠3( )
∠AFE=∠CFD( )
∴∠E=_________.
∵∠1=∠2(已知)
∴∠1+∠CAD=∠2+∠_______.
即∠BAC=∠DAE
在△ABC和△ADE中
∴△ABC≌△ADE( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某消防隊(duì)在一居民樓前進(jìn)行演習(xí),消防員利用云梯成功救出點(diǎn)B處的求救者后,又發(fā)現(xiàn)點(diǎn)B正上方點(diǎn)C處還有一名求救者.在消防車上點(diǎn)A處測(cè)得點(diǎn)B和點(diǎn)C的仰角分別是45°和65°,點(diǎn)A距地面2.5米,點(diǎn)B距地面10.5米.為救出點(diǎn)C處的求救者,云梯需要繼續(xù)上升的高度BC約為多少米?(結(jié)果保留整數(shù).參考數(shù)據(jù):tan65°≈2.1,sin65°≈0.9,cos65°≈0.4,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 P為等邊△ABC的邊AB上一點(diǎn),Q為BC延長(zhǎng)線上一點(diǎn),且PA=CQ,連PQ交AC邊于D.
(1)證明:PD=DQ.
(2)如圖2,過(guò)P作PE⊥AC于E,若AB=6,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E,F(xiàn)分別是正方形ABCD的邊CD,AD上的點(diǎn),CE=DF,AE,BF相交于點(diǎn)O.下列結(jié)論:①AE=BF;②AE⊥BF;③△ABF與△DAE成中心對(duì)稱.其中,正確的結(jié)論有( )
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D為的AB邊上的中點(diǎn),點(diǎn)前E為AD的中點(diǎn),為正三角形,給出下列結(jié)論,①,②,③,④若,點(diǎn)是上一動(dòng)點(diǎn),點(diǎn)到、邊的距離分別為,,則的最小值是3.其中正確的結(jié)論是_________(填寫正確結(jié)論的番號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把球放在長(zhǎng)方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長(zhǎng)是( 。
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com