【題目】探究規(guī)律:我們有可以直接應(yīng)用的結(jié)論:若兩條直線平行,那么在一條直線上任取一點,無論這點在直線的什么位置,這點到另一條直線的距離均相等.例如:如圖1,兩直線,兩點,上,,,則.

如圖2,已知直線,,為直線上的兩點,.為直線上的兩點.

(1)請寫出圖中面積相等的各對三角形: .

(2)如果,為三個定點,點上移動,那么無論點移動到任何位置,總有: 的面積相等;理由是: .

解決問題:

如圖3,五邊形是張大爺十年前承包的一塊土地的示意圖,經(jīng)過多年開墾荒地,現(xiàn)已變成如圖4所示的形狀,但承包土地與開墾荒地的分界小路(圖4中折線)還保留著,張大爺想過點修一條直路,直路修好后,要保持直路左邊的土地面積與承包時的一樣多.請你用以上的幾何知識,按張大爺?shù)囊笤O(shè)計出修路方案.(不計分界小路與直路的占地面積)

(1)寫出設(shè)計方案,并在圖4中畫出相應(yīng)的圖形;

(2)說明方案設(shè)計理由.

【答案】探究規(guī)律:(1),;(2); 同底等高的兩個三角形的面積相等;解決問題:(1)方案見解析;(2)理由見解析.

【解析】分析:(1)根據(jù)同底等高的三角形的面積相等與三角形的面積的和差關(guān)系求解;(2)①結(jié)合三角形的面積公式回答;②根據(jù)平行線間的距離處處相等和同底等高的兩三角形面積相等設(shè)計方案.

詳解:(1),.

(2)同底等高的兩個三角形的面積相等.

連接,過點作的平行線于點,連接

就是所求的道路.

設(shè)EFCD于點H,

ECDF,

DF點到EC的距離相等(平行線間的距離處處相等),

又∵ECEC,

SECFSECD(同底等高的兩三角形面積相等),

S五邊形ABCDES五邊形EDCMN,S五邊形EDCMNS四邊形EFMN

即:EF為直路的位置可以保持直路左邊的土地面積與承包時的一樣多,右邊的土地面積與開墾的荒地面積一樣多

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的邊BC=2 cm,且△ABC內(nèi)接于半徑為2cm的⊙O,則∠A=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個自然數(shù)m,若將其數(shù)字重新排列可得一個新的自然數(shù)n,如果m=3n,我們稱m是一個希望數(shù).例如:3105=3×1035,71253=3×23751,371250=3×123750.

(1)請說明41不是希望數(shù),并證明任意兩位數(shù)都不可能是希望數(shù)”.

2)一個四位希望數(shù)”M記為,已知,且c=2,請求出這個四位希望數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠MON=60°,作邊長為1的正六邊形A1B1C1D1E1F1 , 邊A1B1、F1E1分別在射線OM、ON上,邊C1D1所在的直線分別交OM、ON于點A2、F2 , 以A2F2為邊作正六邊形A2B2C2D2E2F2 , 邊C2D2所在的直線分別交OM、ON于點A3、F3 , 再以A3F3為邊作正六邊形A3B3C3D3E3F3 , …,依此規(guī)律,經(jīng)第n次作圖后,點Bn到ON的距離是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年五一節(jié),小明外出爬山,他從山腳爬到山頂?shù)倪^程中,中途休息了一段時間設(shè)他從山腳出發(fā)后所用的時間為t分鐘),所走的路程為s),s與t之間的函數(shù)關(guān)系如圖所示,下列說法錯誤的是( )

A小明中途休息用了20分鐘

B小明休息前爬山的平均速度為每分鐘70米

C小明在上述過程中所走的路程為6600米

D小明休息前爬山的平均速度大于休息后爬山的平均速度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C是線段AB的中點,CD平分ACE,CE平分BCD,CD=CE;

(1)求證:ACD≌△BCE;

(2)D=50°,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時間關(guān)系的圖像如圖所示.根據(jù)圖像解答下列問題:

(1)誰先出發(fā)?先出發(fā)多少時間?誰先到達終點?先到多少時間?

(2)分別求出甲、乙兩人的行駛速度;

(3)在什么時間段內(nèi),兩人均行駛在途中?(不包括起點和終點)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF翻折,點A恰好落在BC邊的A′處,若AB= ,∠EFA=60°,則四邊形A′B′EF的周長是(
A.1+3
B.3+
C.4+
D.5+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一只螞蟻在一個半圓形的花壇的周邊尋找食物,如圖1,螞蟻從圓心O出發(fā),按圖中箭頭所示的方向,依次爬完下列三條線路:(1)線段OA、(2)半圓弧AB、(3)線段BO后,回到出發(fā)點。已知螞蟻在爬行過程中保持勻速,且在尋找到食物后停下來吃了2分鐘。螞蟻離出發(fā)點的距離s(螞蟻所在位置與O點之間線段的長度)與時間t之間的圖象如圖2所示,問:

(1)花壇的半徑是_______米,螞蟻是在上述三條線路中的哪條上尋找到了食物_________(填(1)、(2)、或(3));

(2)螞蟻的速度是_______/分鐘;

(3)螞蟻從O點出發(fā),直到回到O點,一共用時多少分鐘?(

查看答案和解析>>

同步練習(xí)冊答案