【題目】如圖,在邊長為2的菱形ABCD中,∠A60°,MAD邊的中點(diǎn),NAB邊上的一動點(diǎn),將△AMN沿MN所在直線翻折得到△AMN,連接AC,則AC長度的最小值是_____

【答案】1

【解析】

根據(jù)題意,在N的運(yùn)動過程中A′在以M為圓心、AD為直徑的圓上的弧AD上運(yùn)動,當(dāng)AC取最小值時,由兩點(diǎn)之間線段最短知此時M、A′、C三點(diǎn)共線,得出A′的位置,進(jìn)而利用銳角三角函數(shù)關(guān)系求出AC的長即可.

解:如圖所示:

MA′是定值,AC長度取最小值時,即A′在MC上時,

過點(diǎn)MMFDC于點(diǎn)F,

∵在邊長為2的菱形ABCD中,∠A60°,MAD中點(diǎn),

2MDADCD2,∠FDM60°,

∴∠FMD30°,

FDMD

FMDM×cos30°=,

MC,

ACMCMA′=1

故答案為:1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC沿射線BC方向平移3cm得到△DEF.若△ABC的周長為14cm,則四邊形ABFD的周長為( 。

A. 14cm B. 17cm C. 20cm D. 23cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來水“階梯計(jì)費(fèi)”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實(shí)行加價收費(fèi),為更好地決策,自來水公司隨機(jī)抽取部分用戶的用適量數(shù)據(jù),并繪制了如下不完整統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請你根據(jù)統(tǒng)計(jì)圖解決下列問題:

(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?

(2)補(bǔ)全頻數(shù)分直方圖,求扇形統(tǒng)計(jì)圖中“25噸~30噸”部分的圓心角度數(shù);

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+ca0)的對稱軸為x=1,交x軸的一個交點(diǎn)為(x1,0),且﹣1x10,有下列5個結(jié)論:①abc0;9a﹣3b+c02c3b;a+c2b2;a+bmam+b)(m≠1的實(shí)數(shù))其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰和小明沿同一條路同時從學(xué)校出發(fā)到圖書館查閱資料,學(xué)校與圖書館的路程是4千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時,小明剛好到達(dá)圖書館,圖中折線OABC和線段OD分別表示兩人離學(xué)校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:

1)小聰在圖書館查閱資料的時間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘.

2)請你求出小明離開學(xué)校的路程(千米)與所經(jīng)過的時間(分鐘)之間的函數(shù)關(guān)系;

3)當(dāng)小聰與小明迎面相遇時,他們離學(xué)校的路程是多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸相交于兩點(diǎn)A10),B30),與y軸相交于點(diǎn)C0,3).

1)求拋物線的函數(shù)關(guān)系式.

2)將y=ax2+bx+c化成y=ax﹣m2+k的形式(請直接寫出答案).

3)若點(diǎn)D3.5,m)是拋物線y=ax2+bx+c上的一點(diǎn),請求出m的值,并求出此時ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8如圖,在ABC中,AB=AC,DACABC的一個外角

實(shí)踐與操作:

根據(jù)要求尺規(guī)作圖,并在圖中標(biāo)明相應(yīng)字母保留作圖痕跡,不寫作法

1DAC的平分線AM

2作線段AC的垂直平分線,與AM交于點(diǎn)F,與BC邊交于點(diǎn)E,連接AE、CF

猜想并證明:

判斷四邊形AECF的形狀并加以證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠E∠F90°,∠B∠C,AEAF.有以下結(jié)論:①EMFN②CDDN;③∠FAN∠EAM④△ACN≌△ABM.其中正確的有( ).

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次大型活動,組委會啟用無人機(jī)航拍活動過程,在操控?zé)o人機(jī)時應(yīng)根據(jù)現(xiàn)場狀況調(diào)節(jié)高度,已知無人機(jī)在上升和下降過程中速度相同,設(shè)無人機(jī)的飛行高度h(米)與操控?zé)o人機(jī)的時間t(分鐘)之間的關(guān)系如圖中的實(shí)線所示,根據(jù)圖象回答下列問題:

1)圖中的自變量是______,因變量是______;

2)無人機(jī)在75米高的上空停留的時間是______分鐘;

3)在上升或下降過程中,無人機(jī)的速度______為米/分;

4)圖中a表示的數(shù)是______b表示的數(shù)是______;

5)圖中點(diǎn)A表示______

查看答案和解析>>

同步練習(xí)冊答案