【題目】(操作發(fā)現(xiàn))如圖1,在邊長為x的正方形內(nèi)剪去邊長為y的小正方形,剩下的圖形面積可以表示為 ;把剩下的這個圖形沿圖2的虛線剪開,并拼成圖3的長方形,可得長為 、寬為 ,那么這個長方形的面積可以表示為 ,不同的方法求得的面積應(yīng)相等,由此可以得到一個等式.

(數(shù)學(xué)應(yīng)用)利用得到的等式解決以下問題:

1

2

(思維拓展)(3)利用得到的等式計算

解:原式=

請你把接下來的計算過程補充完整.

【答案】19999.75;(2199;(39999

【解析】

利用割補法求得圖形面積;

利用上一問得到的等式進行計算.

解:

圖1中剩下圖形面積為大正方形面積-小正方形面積,即 ;

圖3長方形中,長為(x+y),寬為(x-y),所以這個長方形的面積為 ,因此得到一個等式為:=

1

2

(3)

原式=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD交于點O,ABAC,點EBD上一點,且AEAD,∠EAD=∠BAC

⑴ 求證:∠ABD=∠ACD;

⑵ 若∠ACB=65°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本學(xué)期,大興區(qū)開展了恰同學(xué)少年,品詩詞美韻中華傳統(tǒng)詩詞大賽活動小江統(tǒng)計了班級30名同學(xué)四月份的詩詞背誦數(shù)量,具體數(shù)據(jù)如表所示:

詩詞數(shù)量

4

5

6

7

8

9

10

11

人數(shù)

3

4

4

5

7

5

1

1

那么這30名同學(xué)四月份詩詞背誦數(shù)量的眾數(shù)和中位數(shù)分別是  

A. 11,7 B. 7,5 C. 8,8 D. 8,7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】結(jié)合數(shù)軸與絕對值的知識回答下列問題:

(1)數(shù)軸上表示41的兩點之間的距離是   ;表示﹣32兩點之間的距離是   ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于|mn|.如果表示數(shù)a和﹣2的兩點之間的距離是3,那么a   ;

(2)若數(shù)軸上表示數(shù)a的點位于﹣42之間,求|a+4|+|a﹣2|的值;

(3)當(dāng)a取何值時,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,ECD邊的中點,將繞點E順時針旋轉(zhuǎn),點D的對應(yīng)點為C,點A的對應(yīng)點為F,過點EBC于點M,連接AMBD交于點N,現(xiàn)有下列結(jié)論:;;;N的外心.其中正確的個數(shù)為  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,把同樣大小的黑色棋子擺放在正多邊形的邊上,按照這樣的規(guī)律擺下去,則第 n個圖形需要黑色棋子的個數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A是反比例函數(shù)圖象第一象限上一點,過點A軸于B點,以AB為直徑的圓恰好與y軸相切,交反比例函數(shù)圖象于點C,在AB的左側(cè)半圓上有一動點D,連結(jié)CDAB于點的面積為的面積為,連接BC,______三角形,若的值最大為1,則k的值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是直線上一點,為任一射線,平分,平分,

1)分別寫出圖中的補角;

2有怎樣的數(shù)量關(guān)系,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,點O為坐標(biāo)原點,矩形OABC的邊OA,OC在坐標(biāo)軸上,點B12,4),點D3,0),點E0,2),過點DDFDE,交AB于點F,連結(jié)EF,將DEF繞點E逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角度為θθ180°).

1)求tanDFE

2)在旋轉(zhuǎn)過程中,當(dāng)DFE的一邊與直線AB平行時,求直線ABDFE所得的三角形的面積.

3)在旋轉(zhuǎn)過程中,當(dāng)∠DFE的兩邊所在直線與y軸圍成的三角形為等腰三角形時,求點F的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案