【題目】將兩個全等的直角三角形ABC和DBE按圖①方式擺放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,點E落在AB上,DE所在直線交AC所在直線于點F。
(1)求證:AF+EF=DE;
(2)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角α,且0°<α<60°,其它條件不變,請在圖②中畫出變換后的圖形,并直接寫出你在(1)中猜想的結(jié)論是否仍然成立;
(3)若將圖①中的△DBE繞點B按順時針方向旋轉(zhuǎn)角β,且60°<β<180°,其它條件不變,如圖③,你認為(1)中猜想的結(jié)論還成立嗎?若成立,寫出證明過程;若不成立,請寫出AF、EF與DE之間的關(guān)系,并說明理由。
【答案】(1)證明見解析;(2)成立,證明見解析;(3)成立,證明見解析.
【解析】
試題分析:(1)利用旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定得出Rt△BCF≌Rt△BEF,進而得出答案;
(2)利用旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定得出Rt△BCF≌Rt△BEF,進而得出答案;
(3)利用旋轉(zhuǎn)的性質(zhì)以及全等三角形的判定得出Rt△BCF≌Rt△BEF,進而得出答案.
試題解析:(1)如圖①所示,連接BF,
∵BC=BE,
在Rt△BCF和Rt△BEF中
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF+EF=AC=DE;
(2)如圖②所示:
延長DE交AC與點F,連接BF,
在Rt△BCF和Rt△BEF中
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF+EF=AC=DE;
(3)如圖③所示:
連接BF,
在Rt△BCF和Rt△BEF中
∴Rt△BCF≌Rt△BEF(HL),
∴EF=CF,
∴AF-FC=AC=DE,
∴AF-EF=DE.
科目:初中數(shù)學 來源: 題型:
【題目】為了解九年級學生的投籃命中率,組織了九年級學生定點投籃,規(guī)定每人投籃3次.現(xiàn)對九年級(1)班每名學生投中的次數(shù)進行統(tǒng)計,繪制成如下的兩幅統(tǒng)計圖,根據(jù)圖中提供的信息,回答下列問題.
(1)九年級(1)班的學生人數(shù)m= 人,扇形統(tǒng)計圖中n= %;
(2)請補全條形統(tǒng)計圖;
(3)扇形統(tǒng)計圖中“3次”對應(yīng)的圓心角的度數(shù)為 °;
(4)若九年級有學生900人,估計投中次數(shù)在2次以上(包括2次)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于二次函數(shù)y=2x2+3,下列說法中正確的是 ( )
A. 它的開口方向是向下 B. 當x<-1時,y隨x的增大而減小
C. 它的頂點坐標是(2,3) D. 當x=0時,y有最大值是3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商品的進價為每千克40元,銷售單價與月銷售量的關(guān)系如下(每千克售價不能高于65元):
該商品以每千克50元為售價,在此基礎(chǔ)上設(shè)每千克的售價上漲x元(x為正整數(shù)),每個月的銷售量為y件.
(1)直接寫出y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)設(shè)利潤為Z元,每千克商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校體育期末考核“立定跳遠”、“800米”、“仰臥起坐”三項,并按3: 5:2的比重算出期末成績.已知小林這三項的考試成績分別為80分、90分、100分,則小林的體育期末成績?yōu)?/span>分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解2013年昆明市九年級學生學業(yè)水平考試的數(shù)學成績,從中隨機抽取1 000名學生的數(shù)學成績,下列說法正確的是( )
A. 2013年昆明市九年級學生是總體 B. 每一名九年級學生是個體
C. 1 000名九年級學生是總體的一個樣本 D. 樣本容量是1 000
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com