【題目】如圖,在邊長為4的正方形ABCD中,請畫出以A為一個頂點,另外兩個頂點在正方形ABCD的邊上,且含邊長為3的所有大小不同的等腰三角形.(要求:只要畫出示意圖,并在所畫等腰三角形長為3的邊上標(biāo)注數(shù)字3)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AC、BC是⊙O的弦,直徑DE⊥AC于點P.若點D在優(yōu)弧 上,AB=8,BC=3,則DP=
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,操場上有兩根旗桿間相距12m,小強同學(xué)從B點沿BA走向A,一定時間后他到達(dá)M點,此時他測得CM和DM的夾角為90°,且CM=DM,已知旗桿AC的高為3m,小強同學(xué)行走的速度為0.5m/s,則:
(1)請你求出另一旗桿BD的高度;
(2)小強從M點到達(dá)A點還需要多長時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(6,0),B(8,5),將線段OA平移至CB,點D在x軸正半軸上(不與點A重合),連接OC,AB,CD,BD.
(1)求對角線AC的長;
(2)設(shè)點D的坐標(biāo)為(x,0),△ODC與△ABD的面積分別記為S1,S2.設(shè)S=S1﹣S2,寫出S關(guān)于x的函數(shù)解析式,并探究是否存在點D使S與△DBC的面積相等?如果存在,用坐標(biāo)形式寫出點D的位置;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的頂點坐標(biāo)為A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐標(biāo)原點O為旋轉(zhuǎn)中心,順時針旋轉(zhuǎn)90°,得到△A′B′C′,點B′、C′分別是點B、C的對應(yīng)點.
(1)求過點B′的反比例函數(shù)解析式;
(2)求線段CC′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內(nèi)的拋物線上的動點.
(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫出O、P、A三點坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為10厘米,點E在邊AB上,且AE=4厘米,如果點P在線段BC上以2厘米/秒的速度由B點向C點運動,同時,點Q在線段CD上由C點向D點運動.設(shè)運動時間為t秒.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過2秒后,△BPE與△CQP是否全等?請說明理由;
(2)若點Q的運動速度與點P的運動速度不相等,則當(dāng)t為何值時,能夠使△BPE與△CQP全等;此時點Q的運動速度為多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中線,AE是∠BAD的角平分線,DF∥AB交AE的延長線于點F,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某住宅小區(qū)在施工過程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測量,在四邊形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.
(1)△ACD是直角三角形嗎?為什么?
(2)小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問鋪滿這塊空地共需花費多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com