【題目】如圖,在四邊形ABCD中,BD為一條對(duì)角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.
(1)求證:四邊形BCDE為菱形;
(2)連接AC,若AC平分∠BAD,BC=1,求AC的長(zhǎng).
【答案】
(1)證明:∵AD=2BC,E為AD的中點(diǎn),
∴DE=BC,
∵AD∥BC,
∴四邊形BCDE是平行四邊形,
∵∠ABD=90°,AE=DE,
∴BE=DE,
∴四邊形BCDE是菱形
(2)解:連接AC.
∵AD∥BC,AC平分∠BAD,
∴∠BAC=∠DAC=∠BCA,
∴AB=BC=1,
∵AD=2BC=2,
∴sin∠ADB= ,
∴∠ADB=30°,
∴∠DAC=30°,∠ADC=60°,
在Rt△ACD中,∵AD=2,
∴CD=1,AC= .
【解析】(1)由DE=BC,DE∥BC,推出四邊形BCDE是平行四邊形,再證明BE=DE即可解決問(wèn)題;(2)在Rt△只要證明∠ADC=60°,AD=2即可解決問(wèn)題;
【考點(diǎn)精析】通過(guò)靈活運(yùn)用直角三角形斜邊上的中線,掌握直角三角形斜邊上的中線等于斜邊的一半即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:AE是△ABC的外角∠CAD的平分線.
(1)若AE∥BC,如圖1,試說(shuō)明∠B=∠C;
(2)若AE交BC的延長(zhǎng)線于點(diǎn)E,如圖2,直接寫(xiě)出反應(yīng)∠B、∠ACB、∠AEC之間關(guān)系的等式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在2016年“雙十一”期間,某快遞公司計(jì)劃租用甲、乙兩種車(chē)輛快遞貨物,從貨物量來(lái)計(jì)算:若租用兩種車(chē)輛合運(yùn),10天可以完成任務(wù);若單獨(dú)租用乙種車(chē)輛,完成任務(wù)的天數(shù)是單獨(dú)租用甲種車(chē)輛完成任務(wù)天數(shù)的2倍.
(1)求甲、乙兩種車(chē)輛單獨(dú)完成任務(wù)分別需要多少天?
(2)已知租用甲、乙兩種車(chē)輛合運(yùn)需租金65000元,甲種車(chē)輛每天的租金比乙種車(chē)輛每天的租金多1500元,試問(wèn):租甲和乙兩種車(chē)輛、單獨(dú)租甲種車(chē)輛、單獨(dú)租乙種車(chē)輛這三種租車(chē)方案中,哪一種租金最少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD是AB邊上高,若AD=16,CD=12,BD=9.
(1)求△ABC的周長(zhǎng);
(2)判斷△ABC的形狀并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,∠1=∠2,CF平分∠DCE.
(1)試判斷直線AC與BD有怎樣的位置關(guān)系?并說(shuō)明理由;
(2)若∠1=80°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB=AC=AD,AC平分∠BAD,點(diǎn)P是AC延長(zhǎng)線上一點(diǎn),且PD⊥AD.
(1)證明:∠BDC=∠PDC;
(2)若AC與BD相交于點(diǎn)E,AB=1,CE:CP=2:3,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點(diǎn)F,E為四邊形ABCD外一點(diǎn),且∠ADE=∠BAD,AE⊥AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:在平行四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.求證:
(1)△AEH≌△CGF;
(2)四邊形EFGH是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com