如圖,在平面直角坐標系中,函數(shù)y=2x+12的圖象分別交x軸、y軸于A、B兩點.過點A的直線交y軸正半軸于點M,且點M為線段OB的中點.△ABPAOB

(1)求直線AM的解析式;

(2)試在直線AM上找一點P,使得SABPSAOB ,請直接寫出點P的坐標;

(3)若點H為坐標平面內(nèi)任意一點,在坐標平面內(nèi)是否存在這樣的點H,使以AB、M、H為頂點的四邊形是等腰梯形?若存在,請直接寫出點H的坐標;若不存在,請說明理由.

解:(1)函數(shù)的解析式為y=2x+12    ∴A(-6,0),B(0,12)

∵點M為線段OB的中點    ∴M(0,6)

設(shè)直線AM的解析式為:ykxb

-6kb=0         

k=1  b=6  

∴直線AM的解析式為:yx+6

(2)P1(-18,-12),P2(6,12)

(3)H1(-6,18),H2(-12,0),H3(-)

?b=6 
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習冊答案