(1)C點(diǎn)的坐標(biāo)為(0,2);理由如下:
如圖,連接AC,CB.依相交弦定理的推論可得OC
2=OA•OB,
解得OC=2.
故C點(diǎn)的坐標(biāo)為(0,2).
(2)設(shè)拋物線解析式為y=a(x+1)(x-4).
把點(diǎn)C(0,2)的坐標(biāo)代入上式得a=-
.
∴拋物線解析式是y=-
x
2+
x+2.
(3)如圖,過點(diǎn)C作CD
∥OB,交拋物線于點(diǎn)D,則四邊形BOCD為直角梯形.
由(2)知拋物線的對稱軸是x=
,
∴點(diǎn)D的坐標(biāo)為(3,2).
設(shè)過點(diǎn)B,點(diǎn)D的解析式是y=kx+b.
把點(diǎn)B(4,0),點(diǎn)D(3,2)的坐標(biāo)代入上式得
解之得
∴直線BD的解析式是y=-2x+8.
(4)依題意可知,以MN為直徑的半圓與線段AB相切于點(diǎn)P.
設(shè)點(diǎn)M的坐標(biāo)為(m,n).
①當(dāng)點(diǎn)M在第一或第三象限時,m=2n.
把點(diǎn)M的坐標(biāo)(2n,n)代入拋物線的解析式得n
2-n-1=0,
解之得n=
.
∴點(diǎn)M的坐標(biāo)是(1+
,
)或(1-
,
).
②當(dāng)點(diǎn)M在第二或第四象限時,m=-2n.
把點(diǎn)M的坐標(biāo)(-2n,n)代入拋物線的解析式得n
2+2n-1=0,
解之得
n=-1±.
∴點(diǎn)M的坐標(biāo)是(2-2
,-1+
)或(2+2
,-1-
).
綜上,滿足條件的點(diǎn)M的坐標(biāo)是(1+
,
),(1-
,
),
(2-2
,-1+
),(2+2
,-1-
).