【題目】在Rt△ABC中,∠C=90°.
(1)已知c=25,b=15,求a;
(2)已知a= ,∠A=60°,求b、c.

【答案】
(1)解:根據(jù)勾股定理可得:

a= =20;


(2)解:∵△ABC為Rt△,∠A=60°,

∴∠B=30°,

∴c=2b,

根據(jù)勾股定理可得:a2+b2=c2,即6+b2=(2b)2,

解得b= ,則c=2


【解析】(1)根據(jù)勾股定理即可直接求出a的值;(2)根據(jù)直角三角形的性質(zhì)與勾股定理即可求出b、c的值.
【考點精析】解答此題的關鍵在于理解解直角三角形的相關知識,掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知xa=4,xb=3,求x3a+b的值是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.

(1)求證:AE=CF;
(2)若∠ABE=55°,求∠EGC的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把正整數(shù) 排列成如圖所示得一個數(shù)表.

⑴用一個正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為,另外三個數(shù)用含的式子表示出來,從大到小依次是 _____ ,_______ ________ ;

⑵.當被框住的4個數(shù)之和等于416時, 的值是多少?

⑶被框住的4個數(shù)之和能否等于622?如果能,請求出的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一組數(shù)據(jù)5,10,15,x,9的平均數(shù)是8,那么這組數(shù)據(jù)的中位數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.

(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點,AE=CF,連接EF、BF,EF與對角線AC交于點O,且BE=BF,∠BEF=2∠BAC.

(1)求證:OE=OF;
(2)若BC=2 ,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著柴靜紀錄片《穹頂之下》的播出,全社會對空氣污染問題越來越重視,空氣凈化器的銷量也大增,電器商社從廠家購進了A,B兩種型號的空氣凈化器,已知一臺A型空氣凈化器的進價比一臺B型空氣凈化器的進價多300元,用7500元購進A型空氣凈化器和用6000元購進B型空氣凈化器的臺數(shù)相同.

(1)求一臺A型空氣凈化器和一臺B型空氣凈化器的進價各為多少元?

(2)電器商社決定用不超過14000元從廠家購進A,B兩種型號的空氣凈化器共10臺,且B型空氣凈化器的臺數(shù)少于A型空氣凈化器的臺數(shù)的2倍,問電器商社有幾種進貨方案?如果兩種型號的空氣凈化器在進價的基礎上都加價50%銷售,請你在上述方案中選一個方案使得電器商社在銷售完10臺空氣凈化器能獲得最多利潤.

(3)在銷售過程中,A型空氣凈化器因為凈化能力強,噪音小而更受消費者的歡迎.為了增大B型空氣凈化器的銷量,電器商社決定對B型空氣凈化器進行降價銷售,經(jīng)市場調(diào)查,當B型空氣凈化器的售價為1800元時,每天可賣出4臺,在此基礎上,售價每降低50元,每天將多售出1臺,如果每天電器商社銷售B型空氣凈化器的利潤為3200元,請問電器商社應將B型空氣凈化器的售價定為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“明天是晴天”這個事件是(  )

A.確定事件B.不可能事件C.必然事件D.不確定事件

查看答案和解析>>

同步練習冊答案