【題目】如圖,矩形AEFG的頂點(diǎn)EG分別在正方形ABCDAB,AD邊上,連接B,交EF于點(diǎn)M,交FG于點(diǎn)N,設(shè)AE=a,AG=b,AB=cbac).

1)求證: ;

2)求AMN的面積(用a,b,c的代數(shù)式表示);

3)當(dāng)∠MAN=45°時(shí),求證:c2=2ab

【答案】1)證明見(jiàn)解析;(2ca+bc);(3)證明見(jiàn)解析.

【解析】試題分析:1)首先過(guò)點(diǎn)NNHAB于點(diǎn)H,過(guò)點(diǎn)MMIAD于點(diǎn)I,可得NHBDIM是等腰直角三角形,四邊形AGNH和四邊形AEMI是矩形,則可求得BN=bDM=a,繼而求得答案;

2)由SAMN=SABD-SABM-SADN,可得SAMN=c2-cc-a-cc-b),繼而求得答案;

3易證得∴∠DMA=BAN,又由∠ABD=ADB=45°,可證得ADM∽△NBA,然后由相似三角形的對(duì)應(yīng)邊成比例,求得答案.

試題解析:1)證明:過(guò)點(diǎn)NNHAB于點(diǎn)H,過(guò)點(diǎn)MMIAD于點(diǎn)I,

∵四邊形ABCD是正方形,

∴∠ADB=ABD=45°,

∴△NHBDIM是等腰直角三角形,四邊形AGNH和四邊形AEMI是矩形,

BN=NH=AG=b,DM=MI=AE=a,

;

2SAMN=SABD﹣SABM﹣SADN

=ABADABMEADNG

=c2ccaccb

=ccc+ac+b

=ca+bc);

3∵∠DMA=ABD+MAB=MAB+45°,BAN=MAB+MAN=MAB+45°,

∴∠DMA=BAN,

∵∠ABD=ADB=45°

∴△ADM∽△NBA,

DM=a,BN=b,

c2=2ab

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)EF分別在線段OA,OC上,且OB=OD,1=2AE=CF

1)證明:BEO≌△DFO;

2)證明:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)C旋轉(zhuǎn)得到矩形FECG,點(diǎn)EAD上,延長(zhǎng)EDFG于點(diǎn)H

(1)求證:△EDC≌△HFE

(2)連接BE、CH

①四邊形BEHC是怎樣的特殊四邊形?證明你的結(jié)論.

②當(dāng)ABBC的比值為 時(shí),四邊形BEHC為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:如圖1,若,則

理由:如圖,過(guò)點(diǎn),

因?yàn)?/span>

所以,

所以,

所以

交流:(1)若將點(diǎn)移至圖2所示的位置,,此時(shí)、、之間有什么關(guān)系?請(qǐng)說(shuō)明理由.

探究:(2)在圖3中,,、又有何關(guān)系?

應(yīng)用:(3)在圖4中,若,又得到什么結(jié)論?請(qǐng)直接寫(xiě)出該結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠BAC=100°,∠ABC=∠ACB,點(diǎn)D在直線BC上運(yùn)動(dòng)(不與點(diǎn)BC重合),點(diǎn)E在射線AC上運(yùn)動(dòng),且∠ADE=∠AED,設(shè)∠DAC=n

(1)如圖(1),當(dāng)點(diǎn)D在邊BC上時(shí),且n=36°,則∠BAD= _________,∠CDE= _________.

(2)如圖(2),當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)B的左側(cè)時(shí),其他條件不變,請(qǐng)猜想∠BAD和∠CDE的數(shù)量關(guān)系,并說(shuō)明理由.

(3)當(dāng)點(diǎn)D運(yùn)動(dòng)到點(diǎn)C的右側(cè)時(shí),其他條件不變,∠BAD和∠CDE還滿足(2)中的數(shù)量關(guān)系嗎?請(qǐng)畫(huà)出圖形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,E為正方形ABCD的邊BC延長(zhǎng)線上一點(diǎn),且CEAC,AECD于點(diǎn)F,那么∠AFC的度數(shù)為(

A. 112.5° B. 125° C. 135° D. 150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有三個(gè)點(diǎn),的邊上一點(diǎn),經(jīng)平移后得到,點(diǎn)的對(duì)應(yīng)點(diǎn)為.

1)畫(huà)出平移后的,寫(xiě)出點(diǎn)的坐標(biāo);

2的面積為_________________

3)若點(diǎn)軸上一動(dòng)點(diǎn),的面積為,求之間的關(guān)系式(用含的式子表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,邊上的中線,,且,連接.

(1)求證:四邊形為菱形;

(2)連接,若平分,,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)x1、x2是一元二次方程2x2﹣7x+5=0的兩根,利用一元二次方程根與系數(shù)的關(guān)系,求下列各式的值

1x12x2+x1x22; (2)(x1x22

查看答案和解析>>

同步練習(xí)冊(cè)答案