【題目】如圖,折疊長方形的一邊AD,使點D落在BC邊上的點F處,BC=15,AB=9.
求:(1)FC的長;(2)EF的長.
【答案】(1)FC=3;(2)EF的長為5.
【解析】
(1)由折疊性質(zhì)可得AF=AD,由勾股定理可求出BF的值,再由FC=BC-BF求解即可;
(2)由題意得EF=DE,設DE的長為x,則EC的長為(9-x)cm,在Rt△EFC中,由勾股定理即可求得EF的值.
解:(1)∵矩形對邊相等,
∴AD=BC=15
∵折疊長方形的一邊AD,點D落在BC邊上的點F處
∴AF=AD=15,
在Rt△ABF中,由勾股定理得,
∴FC=BC·BF=15-12=3
(2)折疊長方形的一邊AD,點D落在BC邊上的點F處
∴EF=DE
設DE=x,則EC=9·x,
在Rt△EFC中,由勾股定理得,
即
解得x=5
即EF的長為5。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABE中,∠AEB=90°,AE=BE,D是AE上的一點,∠ABD=15°,C為BE延長線上一點,且有AC=BD,求∠ACD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是盼盼家新裝修的房子,其中三個房間甲、乙、丙.他將一個梯子斜靠在墻上,梯子頂端距離地面的垂直距離記作,如果梯子的底端不動,頂端靠在對面墻上,此時梯子的頂端距離地面的垂直距離記作.
(1)當盼盼在甲房間時,梯子靠在對面墻上,頂端剛好落在對面墻角處,若米,米,則甲房間的寬______米;
(2)當盼盼在乙房間時,測得米,米,且,求乙房間的寬;
(3)當盼盼在丙房間時,測得米,且,.
①求的度數(shù);
②求丙房間的寬.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù)y = kx + b的圖象經(jīng)過點(1,-2)和(2,0).
(1)求這個一次函數(shù)的關系式:
(2)將該函數(shù)的圖象沿x軸向左平移3個單位后,求所得圖象對應的函數(shù)表達式。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1所示,在Rt△ABC中,∠ACB=90°,AC=BC,點D在斜邊AB上,點E在直角邊BC上,若∠CDE=45°,求證:△ACD∽△BDE.
(2)如圖2所示,在矩形ABCD中,AB=4cm,BC=10cm,點E在BC上,連接AE,過點E作EF⊥AE交CD(或CD的延長線)于點F.
①若BE:EC=1:9,求CF的長;
②若點F恰好與點D重合,請在備用圖上畫出圖形,并求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象過(﹣2,0),則下列結論:①bc>0②b+2a=0;③a+c>b;④16a+4b+c=0;⑤3a+c<0,其中正確的結論是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的內(nèi)接四邊形ABCD中,AC,BD是它的對角線,AC的中點I是△ABD的內(nèi)心.求證:
(1)OI是△IBD的外接圓的切線;
(2)AB+AD=2BD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在△ABC中,AD是BC邊上的高線,CE是AB邊上的中線,DG⊥CE于G,CG=EG
(1)求證:CD=AE;
(2)若AD=BD,CD=2,則求△ABD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2﹣ax﹣2a(a為常數(shù)且不等于0)與x軸的交點為A,B兩點,且A點在B的右側.
(1)當拋物線經(jīng)過點(3,8),求a的值;
(2)求A、B兩點的坐標;
(3)若拋物線的頂點為M,且點M到x軸的距離等于AB的3倍,求拋物線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com