已知二次函數(shù)的圖象與x軸分別交于A、B兩點(如圖所示),與y軸交于點C,點P是其對稱軸上一動點,當(dāng)PB+PC取得最小值時,點P的坐標(biāo)為   
【答案】分析:A、B兩點關(guān)于拋物線對稱軸對稱,連接AC交對稱軸于P點,連接PB,P點即為所求,只要求出直線AC的解析式,把對稱軸的值代入直線AC的解析式,可求P的坐標(biāo).
解答:解:如圖,連接AC交對稱軸于P點,連接PB,P點即為所求,
由二次函數(shù)y=-x2-x+2,得C(0,2),
令y=0,得x1=-3,x2=1,故A(-3,0),B(1,0),故對稱軸為x==-1,
設(shè)直線AC的解析式為y=kx+b,則,解得,
直線AC:y=x+2,
把x=-1代入直線AC的解析式,得y=,
∴P的坐標(biāo)為(-1,).
故本題答案為:(-1,).
點評:本題考查了二次函數(shù)的綜合運用.關(guān)鍵是根據(jù)拋物線的軸對稱性確定使當(dāng)PB+PC取得最小值時的P點坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸交點的橫坐標(biāo)分別為x1=4,x2=-2,且圖象經(jīng)過點(0,-4),求這個二次函數(shù)的解析式,并求出最大(或最。┲担

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸兩交點間的距離為2,若將圖象沿y軸方向向上平移3個單位,則圖象恰好經(jīng)過原點,且與x軸兩交點間的距離為4,求原二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與y軸的交點坐標(biāo)為(0,a),與x軸的交點坐標(biāo)為(b,0)和(-b,0),若a>0,則函數(shù)解析式為( 。
A、y=
a
b2
x2+a
B、y=-
a
b2
x2+a
C、y=-
a
b2
x2-a
D、y=
a
b2
x2-a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸交于點A(-1,0)和點B(3,0),且與直線y=kx-4交y軸于點C. 
(1)求這個二次函數(shù)的解析式;
(2)如果直線y=kx-4經(jīng)過二次函數(shù)的頂點D,且與x軸交于點E,△AEC的面積與△BCD的面積是否相等?如果相等,請給出證明;如果不相等,請說明理由;
(3)求sin∠ACB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)的圖象與x軸交于A(-2,0),B(3,0)兩點,且函數(shù)有最大值為2,求二次函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊答案