【題目】如圖,點(diǎn)、點(diǎn)是數(shù)軸上原點(diǎn)兩側(cè)的兩點(diǎn),其中點(diǎn)在原點(diǎn)的左側(cè),且滿足,.

1)點(diǎn)、在數(shù)軸上對(duì)應(yīng)的數(shù)分別為____________.

2)點(diǎn)同時(shí)分別以每秒1個(gè)單位長(zhǎng)度和每秒2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng).

①經(jīng)過(guò)幾秒后,;

②點(diǎn)、在運(yùn)動(dòng)的同時(shí),點(diǎn)以每秒1個(gè)單位長(zhǎng)度的速度從原點(diǎn)向右運(yùn)動(dòng),經(jīng)過(guò)幾秒后,點(diǎn)、中的某一點(diǎn)成為其余兩點(diǎn)所連線段的中點(diǎn)?

【答案】1-24;(2)①經(jīng)過(guò)秒或秒,;②經(jīng)過(guò)秒或秒后,點(diǎn)、中的某一點(diǎn)成為其余兩點(diǎn)所連線段的中點(diǎn).

【解析】

(1)設(shè)點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b.根據(jù)題意確定a、b的正負(fù),得到關(guān)于a、b的方程,求解即可;

(2)①設(shè)t秒后OA=3OB.根據(jù)OA=3OB,列出關(guān)于t的一元一次方程,求解即可;

②根據(jù)中點(diǎn)的意義,得到關(guān)于t的方程,分三種情況討論并求解:點(diǎn)PAB的中點(diǎn);點(diǎn)ABP的中點(diǎn);點(diǎn)BAP的中點(diǎn).

(1)設(shè)點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為a,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為b,OA=-aOB=b

,

∴OA+OB=6

∴-a+b=6

.

∴b=-2a

∴點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為-2,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為4

故答案為:-24;

2)①設(shè)秒后,,則點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為-2-t,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為4-2t,故OA=2+t

情況一:當(dāng)點(diǎn)在點(diǎn)右側(cè)時(shí),故OB=4-2t

,

解得:.

情況二:當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),,故OB=2t-4

,

解得:.

答:經(jīng)過(guò)秒或秒,.

②設(shè)經(jīng)過(guò)秒后,點(diǎn)、中的某一點(diǎn)成為其余兩點(diǎn)所連線段的中點(diǎn),此時(shí)點(diǎn)P在數(shù)軸上對(duì)應(yīng)的數(shù)為t, 點(diǎn)A在數(shù)軸上對(duì)應(yīng)的數(shù)為-2-t,點(diǎn)B在數(shù)軸上對(duì)應(yīng)的數(shù)為4-2t

當(dāng)點(diǎn)的中點(diǎn)時(shí),則,

解得:.

當(dāng)點(diǎn)的中點(diǎn)時(shí),則.

解得:.

當(dāng)點(diǎn)是的中點(diǎn)時(shí),則

解得:(不合題意,舍去)

答:經(jīng)過(guò)秒或秒后,點(diǎn)、、中的某一點(diǎn)成為其余兩點(diǎn)所連線段的中點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了“綠化環(huán)境,美化家園”,312日(植樹(shù)節(jié))上午8點(diǎn),某校901、902班同學(xué)同時(shí)參加義務(wù)植樹(shù).901班同學(xué)始終以同一速度種植樹(shù)苗,種植樹(shù)苗的棵數(shù)y1與種植時(shí)間x(小時(shí))的函數(shù)圖象如圖所示;902班同學(xué)開(kāi)始以1小時(shí)種植40棵的速度工作了1.5小時(shí)后,因需更換工具而停下休息半小時(shí)更換工具后種植速度提高至原來(lái)的1.5倍.

(1)902班同學(xué)上午11點(diǎn)時(shí)種植的樹(shù)苗棵數(shù);

(2)分別求出901班種植數(shù)量y1、902班種植數(shù)量y2與種植時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式,并在所給坐標(biāo)系上畫(huà)出y2關(guān)于x的函數(shù)圖象;

(3)已知購(gòu)買(mǎi)樹(shù)苗不多于120棵時(shí),每棵樹(shù)苗的價(jià)格是20元;購(gòu)買(mǎi)樹(shù)苗超過(guò)120棵時(shí),超過(guò)的部分每棵價(jià)格17元.若本次植樹(shù)所購(gòu)樹(shù)苗的平均成本是18元,則兩班同學(xué)上午幾點(diǎn)可以共同完成本次植樹(shù)任務(wù)?

【答案】(1)120棵;(2)見(jiàn)解析;(3)兩班同學(xué)上午12點(diǎn)可以共同完成本次植樹(shù)任務(wù).

【解析】分析:直接進(jìn)行計(jì)算即可.

用待定系數(shù)法求一次函數(shù)解析式即可, 902班的要分成3.

當(dāng)x=2時(shí),兩班同學(xué)共植樹(shù)150棵,平均成本:不符合題意;,x>2,兩班共植樹(shù)(105x-60)棵.列出方程 求解即可.

詳解:(1)902班同學(xué)上午11點(diǎn)時(shí)種植的樹(shù)苗棵數(shù)為:

(棵)

(2)由圖可知,y1是關(guān)于x的正比例函數(shù),可設(shè)y1=k1x,經(jīng)過(guò)(4,180),

代入可得

x≥0),

,

y2關(guān)于x的函數(shù)圖象如圖所示.

(3)當(dāng)x=2時(shí),兩班同學(xué)共植樹(shù)150棵,

平均成本:

所以,x>2,兩班共植樹(shù)(105x-60)棵.

由題意可得:

解得:x=4.

,

所以,兩班同學(xué)上午12點(diǎn)可以共同完成本次植樹(shù)任務(wù).

點(diǎn)睛:考查了待定系數(shù)法求一次函數(shù)解析式,一元一次方程的應(yīng)用,注意分類(lèi)討論

的數(shù)學(xué)思想方法.

型】解答
結(jié)束】
23

【題目】在等腰直角△ABC中,,AC=BC,點(diǎn)P在斜邊AB上(AP>BP.作AQAB,且AQ=BP,連結(jié)CQ(如圖1).

(1)求證:△ACQBCP;

(2)延長(zhǎng)QA至點(diǎn)R,使得∠RCP=45°,RCAB交于點(diǎn)H,如圖2.

求證:CQ2=QA·QR ;

判斷三條線段AHHP、PB的長(zhǎng)度滿足的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)DBC邊的中點(diǎn),于點(diǎn)E于點(diǎn)F

1________(用含α的式子表示)

2)作射線DM與邊AB交于點(diǎn)M,射線DM繞點(diǎn)D順時(shí)針旋轉(zhuǎn),與AC邊交于點(diǎn)N.根據(jù)條件補(bǔ)全圖形,并寫(xiě)出DMDN的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線,直線分別與、交于點(diǎn),點(diǎn)在直線上,于點(diǎn),過(guò)點(diǎn).則下列結(jié)論:

是對(duì)頂角;②;

;④.

其中正確結(jié)論的個(gè)數(shù)是(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)為平面內(nèi)一點(diǎn).

1)如圖1,互余,小明說(shuō)過(guò),很容易說(shuō)明。請(qǐng)幫小明寫(xiě)出具體過(guò)程;

2)如圖2,當(dāng)點(diǎn)在線段上移動(dòng)時(shí)(點(diǎn)兩點(diǎn)不重合),指出的數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

3)在(2)的條件下,若點(diǎn),兩點(diǎn)外側(cè)運(yùn)動(dòng)(點(diǎn),,三點(diǎn)不重合)請(qǐng)直接寫(xiě)出的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)Ax軸上,△OAB是邊長(zhǎng)為4的等邊三角形,以O為旋轉(zhuǎn)中心,將△OAB按順時(shí)針?lè)较蛐D(zhuǎn)60°,得到△OA′B′,那么點(diǎn)A′的坐標(biāo)為( 。

A. (2,2 B. (﹣2,4) C. (﹣2,2 D. (﹣2,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P的坐標(biāo)是a,b,從-2,-1,0,1,2這五個(gè)數(shù)中任取一個(gè)數(shù)作為a的值,再?gòu)挠嘞碌乃膫(gè)數(shù)中任取一個(gè)數(shù)作為b的值,則點(diǎn)Pa,b在平面直角坐標(biāo)系中第二象限內(nèi)的概率是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C是線段AB上一點(diǎn),分別以AC、CB為邊作等邊三角形ACDCBE,連結(jié)AE、BD,AEDCDB分別為F點(diǎn)、H點(diǎn),BDCEG點(diǎn),連結(jié)FG.求證: FAC=HDC ; HFG=HAC; BHA=120 °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A10.0)及在第一象限的動(dòng)點(diǎn)Px,y),且x+y12,設(shè)△OPA的面積為S。

1)求S關(guān)于x的函數(shù)解析式;

2)求x的取值范圍;

3)當(dāng)S15時(shí),求P點(diǎn)坐標(biāo);

查看答案和解析>>

同步練習(xí)冊(cè)答案