已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:CD⊥AB.

  證明:∵DG⊥BC,AC⊥BC(已知)

  ∴∠DGC=∠ACB=(垂直的定義)

  ∴∠DGC+∠ACB=

  ∴DG∥AC(________)

  ∴∠2=________(________)

  ∵∠1=∠2(已知)

  ∴∠1=∠DCA(等量代換)

  ∴EF∥CD(________)

  ∴∠AEF=∠ADC(________)

  ∵EF⊥AB  ∴∠AEF=

  ∴∠ADC=  即  CD⊥AB

答案:
解析:

同旁內(nèi)角互補(bǔ),兩直線平行;∠DCA,兩直線平行,內(nèi)錯(cuò)角相等 ;同位角相等,兩直線平行;兩直線平行,同位角相等.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2012-2013年福建福州瑯岐中學(xué)七年級(jí)下期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:如圖,DG⊥BC ,AC⊥BC,EF⊥AB,∠1="∠2"   求證:CD⊥AB

證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90º(垂直定義)
∴DG∥AC(_______________________________)
∴∠2=____(_______________________________)
∵∠1=∠2(已知)    
∴∠1=∠_____    (等量代換)  
∴EF∥CD(_______________________________)
∴∠AEF="∠______" (_______________________________)
∵EF⊥AB   (已知)  
∴∠AEF=90º (___________________________________ )
∴∠ADC=90º (_______________________________)
∴CD⊥AB  (_______________________________)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2015屆福建福州七年級(jí)下期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,DG⊥BC ,AC⊥BC,EF⊥AB,∠1="∠2"   求證:CD⊥AB

證明:∵DG⊥BC,AC⊥BC(已知)

∴∠DGB=∠ACB=90º(垂直定義)

∴DG∥AC(_______________________________)

∴∠2=____(_______________________________)

∵∠1=∠2(已知)    

∴∠1=∠_____    (等量代換)  

∴EF∥CD(_______________________________)

∴∠AEF="∠______" (_______________________________)

∵EF⊥AB   (已知)  

∴∠AEF=90º (___________________________________ )

∴∠ADC=90º (_______________________________)

∴CD⊥AB  (_______________________________)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省期中題 題型:計(jì)算題

已知:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,
求證:CD⊥AB.
證明:
∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=∠ACB=90°(垂直定義)
∴DG∥AC( 。
∴∠2= _________。ā 。
∵∠1=∠2(已知)
∴∠1=∠ 。ǖ攘看鷵Q)
∴EF∥CD( 。
∴∠AEF=∠ _________ ( 。
∵EF⊥AB(已知)
∴∠AEF=90°( 。
∴∠ADC=90°( 。
∴CD⊥AB( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

      已知,如圖,△ABC中,AB=AC,D是BC上一點(diǎn),點(diǎn)E、F分別在AB、AC上,BD=CF,CD=BE,G為EF的中點(diǎn),問:

   (1)△BDE與△CFD全等嗎?請(qǐng)說明理由.

  (2)判斷DG與EF的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案