【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5。一只螞蟻如果要沿著長方體的表面從點A爬到點B,爬行的最短路程是( )
A.25B.C.35D.無法確定
【答案】A
【解析】
求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體側(cè)面展開,然后利用兩點之間線段最短解答.
解:把長方體的右側(cè)表面展開與前面所在的平面形成一個長方形,如圖1:
∵長方體的寬為10,高為20,點B離點C的距離是5,
∴BD=CD+BC=10+5=15,AD=20,
在直角三角形ABD中,根據(jù)勾股定理得:
∴AB===25;
把長方體的右側(cè)表面展開與上面這個側(cè)面所在的平面形成一個長方形,如圖2:
∵長方體的寬為10,高為20,點B離點C的距離是5,
∴BD=CD+BC=20+5=25,AD=10,
在直角三角形ABD中,根據(jù)勾股定理得:
∴AB===5;
把長方體的上面表面展開與后面所在的平面形成一個長方形,如圖3:
∵長方體的寬為10,高為20,點B離點C的距離是5,
∴AC=CD+AD=20+10=30,
在直角三角形ABC中,根據(jù)勾股定理得:
∴AB===5;
∵25<5<5,
∴自A至B在長方體表面的連線距離最短是25.
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】點A、B均在由面積為1的相同小矩形組成的網(wǎng)格的格點上,建立平面直角坐標系如圖所示.若P是軸上使得∣PA—PB∣的值最大的點,Q是軸上使得QA+QB的值最小的點,則OP·OQ=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,折疊長方形(四個角都是直角)的一邊AD使點D落在BC邊的點F處,已知AB=DC=8cm,AD=BC=10cm,
求:(1)求BF長度;
(2)求CE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線一點,點O是線段AD上一點,OP=OC.
(1)已知∠APO=18°,求∠DCO的度數(shù);
(2)求證:△OPC是等邊三角形;
(3)求證:AC=AO+AP.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某人在大樓30米高(即PH=30米)的窗口P處進行觀測,測得山坡上A處的俯角為15°,山腳B處的俯角為60°,已知該山坡的坡度i為1∶,點P,H,B,C,A在同一個平面上,點H,B,C在同一條直線上,且PH⊥HC.則A,B兩點間的距離是( )
A. 15米 B. 20米 C. 20米 D. 10米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上.頂點B的坐標為(3,),點C的坐標為(1,0),且∠AOB=30°點P為斜邊OB上的一個動點,則PA+PC的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某興趣小組觀察下雨天學校池塘水面高度h(單位:cm)與觀察時間t(單位:min)的關(guān)系,并根據(jù)當天觀察數(shù)據(jù)畫出了如圖所示的圖象,請你結(jié)合圖象回答下列問題:
(1)求線段BC的表達式;
(2)試求出池塘原有水面的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=x +m和y=-x +n的圖象都是經(jīng)過點A(-2,0),且與y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標B: ;C:
(2)求ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,⊿ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向⊿ABC作等腰Rt⊿ABE和等腰Rt⊿ACF,過點E、F作射線GA的垂線,垂足分別為P、Q。
(1)求證:⊿AEP≌⊿BAG;
(2)試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖2,若連接EF交GA的延長線于H,由(2)中的結(jié)論你能判斷EH與FH的大小關(guān)系嗎?并說明理由;
(4)在(3)的條件下,若BC=AG=10,請直接寫出S⊿AEF= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com